We consider a nonlinear SISO system that is a cascade of a scalar bottleneck entrance and an arbitrary Hurwitz positive linear system. This system entrains i.e. in response to a $T$-periodic inflow every solution converges to a unique $T$-periodic solution of the system. We study the problem of maximizing the averaged throughput via controlled switching. The objective is to choose a periodic inflow rate with a given mean value that maximizes the averaged outflow rate of the system. We compare two strategies: 1) switching between a high and low value, and 2) using a constant inflow equal to the prescribed mean value. We show that no switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks.