ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to study the relation between the $C^0$-topology and the topology induced by the spectral norm on the group of Hamiltonian diffeomorphisms of a closed symplectic manifold. Following the approach of Buhovsky-Humili`ere-Seyfaddini, we prove the $C^0$-continuity of the spectral norm for complex projective spaces and negative monotone symplectic manifolds. The case of complex projective spaces provides an alternative approach to the $C^0$-continuity of the spectral norm proven by Shelukhin. We also prove a partial $C^0$-continuity of the spectral norm for rational symplectic manifolds. Some applications such as the Arnold conjecture in the context of $C^0$-symplectic topology are also discussed.
The paper was withdrawn due to a gap in the proof of Lemma 3.
We construct an example of a non-trivial homogeneous quasimorphism on the group of Hamiltonian diffeomorphisms of the $2$- and $4$-dimensional quadric which is continuous with respect to both $C^0$-topology and the Hofer metric. This answers a varian
A semitoric integrable system $F=(J,H)$ on a symplectic $4$-manifold is simple if each fiber of $J$ contains at most one focus-focus critical point. Simple semitoric systems were classified about ten years ago by Pelayo-V~u Ngoc in terms of five inva
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of
We define a family of symplectic invariants which obstruct exact symplectic embeddings between Liouville manifolds, using the general formalism of linearized contact homology and its L-infinity structure. As our primary application, we investigate em