ﻻ يوجد ملخص باللغة العربية
Motivated by the prediction of fractonic topological defects in a quantum crystal, we utilize a reformulated elasticity duality to derive a description of a fracton phase in terms of coupled vector U(1) gauge theories. The fracton order and restricted mobility emerge as a result of an unusual Gauss law where electric field lines of one gauge field act as sources of charge for others. At low energies this vector gauge theory reduces to the previously studied fractonic symmetric tensor gauge theory. We construct the corresponding lattice model and a number of generalizations, which realize fracton phases via a condensation of string-like excitations built out of charged particles, analogous to the p-string condensation mechanism of the gapped X-cube fracton phase.
Fractons are a type of emergent quasiparticle which cannot move freely in isolation, but can easily move in bound pairs. Similar phenomenology is found in boson-affected hopping models, encountered in the study of polaron systems and hole-doped Ising
Recent work has shown that two seemingly different physical mechanisms, namely fracton behavior and confinement, can give rise to non-ergodicity in one-dimensional quantum many-body systems. In this work, we demonstrate an intrinsic link between thes
We use Dirac matrix representations of the Clifford algebra to build fracton models on the lattice and their effective Chern-Simons-like theory. As an example we build lattice fractons in odd $D$ spatial dimensions and their $(D+1)$ effective theory.
We offer a fractonic perspective on a familiar observation -- a flat sheet of paper can be folded only along a straight line if one wants to avoid the creation of additional creases or tears. Our core underlying technical result is the establishment
Recent theoretical research on tensor gauge theories led to the discovery of an exotic type of quasiparticles, dubbed fractons, that obey both charge and dipole conservation. Here we describe physical implementation of dipole conservation laws in rea