ﻻ يوجد ملخص باللغة العربية
In this work we explore the boundary conditions in the Einstein-Hilbert action, by considering a displacement from the Riemannian manifold to an extended one. The latter is characterized by including spinor fields into the quantum geometric description of a noncommutative spacetime. These fields are defined on the background spacetime, emerging from the expectation value of the quantum structure of spacetime generated by matrices that comply with a Clifford algebra. We demonstrate that spinor fields are candidate to describe all known interactions in physics, with gravitation included. In this framework we demonstrate that the cosmological constant $Lambda$, is originated exclusively by massive fermion fields that would be the primordial components of dark energy, during the inflationary expansion of an universe that describes a de Sitter expansion.
I use Unified Spinor Fields (USF), to discuss the creation of magnetic monopoles during preinflation, as excitations of the quantum vacuum coming from a condensate of massive charged vector bosons. For a primordial universe with total energy $M_p$, a
In this paper, we have presented an FLRW universe containing two-fluids (baryonic and dark energy) with a deceleration parameter (DP) having a transition from past decelerating to the present accelerating universe. In this model, dark energy (DE) int
In present research, we construct Kaniadakis holographic dark energy (KHDE) model within a non-flat Universe by considering the Friedmann-Robertson-Walker (FRW) metric with open and closed spatial geometries. We therefore investigate cosmic evolution
In this paper, we perform the polar analysis of the spinorial fields, starting from the regular cases and up to the singular cases: we will give for the first time the polar form of the spinorial field equations for the singular cases constituted by
The concept of oscillatory Universe appears to be realistic and buried in the dynamic dark energy equation of state. We explore its evolutionary history under the frame work of general relativity. We observe that oscillations do not go unnoticed with