ﻻ يوجد ملخص باللغة العربية
We present high resolution spectroscopy of the yellow symbiotic star AG Draconis with ESPaDOnS at the {it Canada-France-Hawaii Telescope}. Our analysis is focused on the profiles of Raman scattered ion{O}{VI} features centered at 6825 AA and 7082 AA, which are formed through Raman scattering of ion{O}{VI}$lambdalambda$1032 and 1038 with atomic hydrogen. These features are found to exhibit double component profiles with conspicuously enhanced red parts. Assuming that the ion{O}{vi} emission region constitutes a part of the accretion flow around the white dwarf, Monte Carlo simulations for ion{O}{VI} line radiative transfer are performed to find that the overall profiles are well fit with the accretion flow azimuthally asymmetric with more matter on the entering side than on the opposite side. As the mass loss rate of the giant component is increased, we find that the flux ratio $F(6825)/F(7082)$ of Raman 6825 and 7082 features decreases and that our observational data are consistent with a mass loss rate $dot Msim 2 times 10^{-7} {rm M_{odot} yr^{-1}}$. We also find that additional bipolar components moving away with a speed $sim 70{rm km s^{-1}}$ provide considerably improved fit to the red wing parts of Raman features. The possibility that the two Raman profiles differ is briefly discussed in relation to the local variation of the ion{O}{VI} doublet flux ratio.
In this papper we present the analyses of the six (1998, 1997, 2001, 2002, 2003 and 2005) last outbursts of AG Draconis on the basis of low resolution visual spectroscopy. A new method to determine the Zanstras temperature of the hot ionizing source
We present the high resolution spectra of the D type symbiotic stars V1016 Cygni and HM Sagittae obtained with the Bohyunsan Optical Echelle Spectrograph (BOES), and investigate the double-peaked asymmetric profiles of the Raman scattered O VI 6825.
The modeling of UV and optical spectra emitted from the symbiotic system AG Draconis, adopting collision of the winds, predicts soft X-ray bremsstrahlung from nebulae downstream of the reverse shock with velocities > 150 km/s and intensities comparab
AG Dra is a symbiotic variable consisting of a metal poor, yellow giant mass donor under-filling its Roche lobe, and a hot accreting white dwarf, possibly surrounded by an optically thick, bright accretion disk which could be present from wind accret
Optical spectroscopy study of the recent AG Peg outburst observed during the second half of 2015 is presented. Considerable variations of the intensity and the shape of the spectral features as well as the changes of the hot component parameters, cau