ترغب بنشر مسار تعليمي؟ اضغط هنا

The nonlinear stability regime of the viscous Faraday wave problem

96   0   0.0 ( 0 )
 نشر من قبل Ian Tice
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a vertically oscillating rigid plane and with an upper boundary given by a free surface. We consider the problem with gravity and surface tension for horizontally periodic flows. This problem gives rise to flat but vertically oscillating equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of these equilibria in certain parameter regimes. We prove that both with and without surface tension there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time $t = 0$ give rise to global-in-time solutions that decay to equilibrium at an identified quantitative rate.



قيم البحث

اقرأ أيضاً

343 - Ruoyuan Liu , Tadahiro Oh 2021
We study the stochastic viscous nonlinear wave equations (SvNLW) on $mathbb T^2$, forced by a fractional derivative of the space-time white noise $xi$. In particular, we consider SvNLW with the singular additive forcing $D^frac{1}{2}xi$ such that sol utions are expected to be merely distributions. By introducing an appropriate renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-type argument, we also prove global well-posedness of the defocusing cubic SvNLW. Lastly, in the defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian random initial data.
115 - Jeffrey Kuan , Tadahiro Oh 2021
We continue the study of low regularity behavior of the viscous nonlinear wave equation (vNLW) on $mathbb R^2$, initiated by v{C}anic and the first author (2021). In this paper, we focus on the defocusing quintic nonlinearity and, by combining a para bolic smoothing with a probabilistic energy estimate, we prove almost sure global well-posedness of vNLW for initial data in $mathcal H^s (mathbb R^2)$, $s >- frac 15$, under a suitable randomization.
This paper investigates the identification of two coefficients in a coupled hyperbolic system with an observation on one component of the solution. Based on the the Carleman estimate for coupled wave equations a logarithmic type stability result is o btained by measurement data only in a suitably chosen subdomain under the assumption that the coefficients are given in a neighborhood of some subboundary.
138 - Lin Chang 2021
In this paper, the asymptotic-time behavior of solutions to an initial boundary value problem in the half space for 1-D isentropic Navier-Stokes system is investigated. It is shown that the viscous shock wave is stable for an impermeable wall problem where the velocity is zero on the boundary provided that the shock wave is initially far away from the boundary. Moreover, the strength of shock wave could be arbitrarily large. This work essentially improves the result of [A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146(1): 1-22, 1999], where the strength of shock wave is sufficiently small.
We investigate the dynamics of roll solutions at the zigzag boundary of the planar Swift-Hohenberg equation. Linear analysis shows an algebraic decay of small perturbation with a $t^{- 1/4}$ rate, instead of the classical $t^{- 1/2}$ diffusive decay rate, due to the degeneracy of the quadratic term of the continuation of the translational mode of the linearized operator in the Bloch-Fourier spaces. The proof is based on a decomposition of the neutral mode and the faster decaying modes in the Bloch-Fourier space, and a fixed-point argument, demonstrating the irrelevancy of the nonlinear terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا