ﻻ يوجد ملخص باللغة العربية
Asymptotic laws of records values have usually been investigated as limits in type. In this paper, we use functional representations of the tail of cumulative distribution functions in the extreme value domain of attraction to directly establish asymptotic laws of records value, not necessarily as limits in type. Results beyond the extreme value value domain are provided. Explicit asymptotic laws concerning very usual laws are listed as well. Some of these laws are expected to be used in fitting distribution
We analyze almost sure asymptotic behavior of extreme values of a regenerative process. We show that under certain conditions a properly centered and normalized running maximum of a regenerative process satisfies a law of the iterated logarithm for t
For $widetilde{cal R} = 1 - exp(- {cal R})$ a random closed set obtained by exponential transformation of the closed range ${cal R}$ of a subordinator, a regenerative composition of generic positive integer $n$ is defined by recording the sizes of cl
Bairamov et al. (Aust N Z J Stat 47:543-547, 2005) characterize the exponential distribution in terms of the regression of a function of a record value with its adjacent record values as covariates. We extend these results to the case of non-adjacent
We prove that any non commutative polynomial of r independent copies of Wigner matrices converges a.s. towards the polynomial of r free semicircular variables in operator norm. This result extends a previous work of Haagerup and Thorbjornsen where GU
The univariate extreme value theory deals with the convergence in type of powers of elements of sequences of cumulative distribution functions on the real line when the power index gets infinite. In terms of convergence of random variables, this amou