ﻻ يوجد ملخص باللغة العربية
We study nanowire-based Josephson junctions shunted by a capacitor and take into account the presence of low-energy quasiparticle excitations. These are treated by extending conventional models used to describe superconducting qubits to include the coherent coupling between fermionic quasiparticles, in particular the Majorana zero modes that emerge in topological superconductors, and the plasma mode of the junction. Using accurate, unbiased matrix-product state techniques, we compute the energy spectrum and response function of the system across the topological phase transition. Furthermore, we develop a perturbative approach, valid in the harmonic limit with small charging energy, illustrating how the presence of low-energy quasiparticles affects the spectrum and response of the junction. Our results are of direct interest to on-going experimental investigations of nanowire-based superconducting qubits.
Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit exhibit superconducting switching currents which can be controlled with a gate electrode. Shapiro voltage steps can be observed under radiofrequency current excitations, with a d
We propose multi-particle interference protocols in the time-energy domain which are able to probe localized topological quasiparticles. Using a set of quantum dots tunnel-coupled to a topologically nontrivial system, the time dependence of the dot l
In the past two years, magic-angle twisted bilayer graphene has emerged as a uniquely versatile experimental platform that combines metallic, superconducting, magnetic and insulating phases in a single crystal. In particular the ability to tune the s
Novel physical phenomena arising at the interface of complex oxide heterostructures offer exciting opportunities for the development of future electronic devices. Using the prototypical LaAlO$_3$/SrTiO$_3$ interface as a model system, we employ a sin
We study the spin transport through a 1D quantum Ising-XY-Ising spin link that emulates a topological superconducting-normal-superconducting structure via Jordan-Wigner (JW) transformation. We calculate, both analytically and numerically, the spectru