ﻻ يوجد ملخص باللغة العربية
We investigate the isogeometric analysis for surface PDEs based on the extended Loop subdivision approach. The basis functions consisting of quartic box-splines corresponding to each subdivided control mesh are utilized to represent the geometry exactly, and construct the solution space for dependent variables as well, which is consistent with the concept of isogeometric analysis. The subdivision process is equivalent to the $h$-refinement of NURBS-based isogeometric analysis. The performance of the proposed method is evaluated by solving various surface PDEs, such as surface Laplace-Beltrami harmonic/biharmonic/triharmonic equations, which are defined on different limit surfaces of the extended Loop subdivision for different initial control meshes. Numerical experiments demonstrate that the proposed method has desirable performance in terms of the accuracy, convergence and computational cost for solving the above surface PDEs defined on both open and closed surfaces. The proposed approach is proved to be second-order accuracy in the sense of $L^2$-norm by theoretical and/or numerical results, which is also outperformed over the standard linear finite element by several numerical comparisons.
We introduce a coupled finite and boundary element formulation for acoustic scattering analysis over thin shell structures. A triangular Loop subdivision surface discretisation is used for both geometry and analysis fields. The Kirchhoff-Love shell e
This work is motivated by the difficulty in assembling the Galerkin matrix when solving Partial Differential Equations (PDEs) with Isogeometric Analysis (IGA) using B-splines of moderate-to-high polynomial degree. To mitigate this problem, we propose
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Lapl
In this paper, we propose a stochastic geometric iterative method to approximate the high-resolution 3D models by finite Loop subdivision surfaces. Given an input mesh as the fitting target, the initial control mesh is generated using the mesh simpli
The fast assembling of stiffness and mass matrices is a key issue in isogeometric analysis, particularly if the spline degree is increased. We present two algorithms based on the idea of sum factorization, one for matrix assembling and one for matrix