ترغب بنشر مسار تعليمي؟ اضغط هنا

The Leibniz rule for the Dirichlet and the Neumann Laplacian

83   0   0.0 ( 0 )
 نشر من قبل Tsukasa Iwabuchi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Tsukasa Iwabuchi




اسأل ChatGPT حول البحث

We study the bilinear estimates in the Sobolev spaces with the Dirichlet and the Neumann boundary condition. The optimal regularity is revealed to get such estimates in the half space case, which is related to not only smoothness of functions and but also boundary behavior. The crucial point for the proof is how to handle boundary values of functions and their derivatives.



قيم البحث

اقرأ أيضاً

We prove an equivalence between weighted Poincare inequalities and the existence of weak solutions to a Neumann problem related to a degenerate p- Laplacian. The Poincare inequalities are formulated in the context of degenerate Sobolev spaces defined in terms of a quadratic form, and the associated matrix is the source of the degeneracy in the p-Laplacian.
How close is the Dirichlet-to-Neumann (DtN) map to the square root of the corresponding boundary Laplacian? This question has been actively investigated in recent years. Somewhat surprisingly, a lot of techniques involved can be traced back to a newl y rediscovered manuscript of Hormander from the 1950s. We present Hormanders approach and its applications, with an emphasis on eigenvalue estimates and spectral asymptotics. In particular, we obtain results for the DtN maps on non-smooth boundaries in the Riemannian setting, the DtN operators for the Helmholtz equation and the DtN operators on differential forms.
We study the regularity up to the boundary of solutions to the Neumann problem for the fractional Laplacian. We prove that if $u$ is a weak solution of $(-Delta)^s u=f$ in $Omega$, $mathcal N_s u=0$ in $Omega^c$, then $u$ is $C^alpha$ up tp the bound ary for some $alpha>0$. Moreover, in case $s>frac12$, we then show that $uin C^{2s-1+alpha}(overlineOmega)$. To prove these results we need, among other things, a delicate Moser iteration on the boundary with some logarithmic corrections. Our methods allow us to treat as well the Neumann problem for the regional fractional Laplacian, and we establish the same boundary regularity result. Prior to our results, the interior regularity for these Neumann problems was well understood, but near the boundary even the continuity of solutions was open.
It was recently shown that the nodal deficiency of an eigenfunction is encoded in the spectrum of the Dirichlet-to-Neumann operators for the eigenfunctions positive and negative nodal domains. While originally derived using symplectic methods, this r esult can also be understood through the spectral flow for a family of boundary conditions imposed on the nodal set, or, equivalently, a family of operators with delta function potentials supported on the nodal set. In this paper we explicitly describe this flow for a Schrodinger operator with separable potential on a rectangular domain, and determine a mechanism by which lower energy eigenfunctions do or do not contribute to the nodal deficiency.
The fractional Leibniz rule is generalized by the Coifman-Meyer estimate. It is shown that the arbitrary redistribution of fractional derivatives for higher order with the corresponding correction terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا