ﻻ يوجد ملخص باللغة العربية
Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electrons natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by allowing high-order harmonics generated from a periodic array of thin one-dimensional crystalline silicon ridge waveguides to propagate in the vacuum gaps between the ridges, thereby avoiding the high absorption loss of the bulk nonlinear material and resulting in a ~ 100-fold increase in propagation length. As the grating period is varied, each high-harmonic shows a different and marked modulation, indicating the onset of coherent addition which is otherwise suppressed in absorption-limited emission. By beating the absorption limit, our results pave the way for bright coherent short-wavelength sources and their implementation in nano-photonic devices.
Various interference effects are known to exist in the process of high harmonic generation (HHG) both at the single atom and macroscopic levels. In particular, the quantum path difference between the long and short trajectories of electron excursion
We report the observations of unexpected layer-dependent, strong, and anisotropic second harmonic generations (SHGs) in atomically thin ReS2. Appreciable (negligible) SHGs are obtained from even (odd) numbers of ReS2 layers, which is opposite to the
On the basis of the Edward-Kornfeld formulation, we study the effective susceptibility of secondharmonic generation (SHG) in colloidal crystals, which are made of graded metallodielectric nanoparticles with an intrinsic SHG susceptibility suspended i
High-order harmonic generation (HHG) in isolated atoms and molecules has been widely utilized in extreme ultraviolet (XUV) photonics and attosecond pulse metrology. Recently, HHG has also been observed in solids, which could lead to important applica
The concept of optical bound states in the continuum (BICs) underpins the existence of strongly localized waves embedded into the radiation spectrum that can enhance the electromagnetic fields in subwavelength photonic structures. Early studies of op