ﻻ يوجد ملخص باللغة العربية
We investigate the spatial and doping evolutions of the superconducting properties of tri-layer cuprate Bi2Sr2Ca2Cu3O10+x by using scanning tunneling microscopy and spectroscopy. Both the superconducting coherence peak and gap size exhibit periodic variations with the structural supermodulation, but the effect is much more pronounced in the underdoped regime than at optimal doping. Moreover, a new type of tunneling spectrum characterized by two superconducting gaps emerges with increasing doping, and the two-gap features also correlate with the supermodulation. We propose that the interaction between the inequivalent outer and inner CuO2 planes is responsible for these novel features that are unique to tri-layer cuprates.
Electron-doped and hole-doped superconducting cuprates exhibit a symmetric phase diagram as a function of doping. This symmetry is however only approximate. Indeed, electron-doped cuprates become superconductors only after a specific annealing proces
We use scanning tunneling microscopy to investigate Bi2Sr2Ca2Cu3O10+{delta} trilayer cuprates from the optimally doped to overdoped regime. We find that the two distinct superconducting gaps from the inner and outer CuO2 planes both decrease rapidly
The effects of pressure up to $sim 20$ kbar, on the structural phase transition of SrFe$_2$As$_2$ and lightly Sn-doped BaFe$_2$As$_2$, as well as on the superconducting transition temperature and upper critical field of (Ba$_{0.55}$K$_{0.45}$)Fe$_2$A
We investigate superconductivity and transport properties of Co doped SmFe$_{1-x}$Co$_{x}$AsO system. The antiferromagnetic (AFM) spin-density wave (SDW) order is rapidly suppressed by Co doping, and superconductivity emerges as $x$ $geq$ 0.05. $T_c$
Many cuprate superconductors possess an unusual charge-ordered phase that is characterized by an approximate $d_{x^2-y^2}$ intra-unit cell form factor and a finite modulation wavevector $bq^ast$. We study the effects impurities on this charge ordered