ﻻ يوجد ملخص باللغة العربية
The attenuation of light in star forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more prevalent on the kiloparsec scale, which is relevant to many current spectroscopic integral field unit surveys. To understand the cause of this variation, we present and analyse textit{Swift}/UVOT near-UV (NUV) images and SDSS/MaNGA emission-line maps of 29 nearby ($z<0.084$) star forming galaxies. We resolve kiloparsec-sized star forming regions within the galaxies and compare their optical nebular attenuation (i.e., the Balmer emission line optical depth, $tau^l_Bequivtau_{textrm{H}beta}-tau_{textrm{H}alpha}$) and NUV stellar continuum attenuation (via the NUV power-law index, $beta$) to the attenuation law described by Battisti et al. The data agree with that model, albeit with significant scatter. We explore the dependence of the scatter of the $beta$-$tau^l_B$ measurements from the star forming regions on different physical parameters, including distance from the nucleus, star formation rate and total dust content. Finally, we compare the measured $tau^l_B$ and $beta$ between the individual star forming regions and the integrated galaxy light. We find a strong variation in $beta$ between the kiloparsec scale and the larger galaxy scale not seen in $tau^l_B$. We conclude that the sight-line dependence of UV attenuation and the reddening of $beta$ due to the light from older stellar populations could contribute to the $beta$-$tau^l_B$ discrepancy.
Resolution studies of test problems set baselines and help define minimum resolution requirements, however, resolution studies must also be performed on scientific simulations to determine the effect of resolution on the specific scientific results.
We compile a sample of about 157,000 spaxels from the Mapping Nearby Galaxies at the Apache Point Observatory survey to derive the average dust attenuation curve for subgalactic star-forming regions of local star-forming galaxies (SFGs) in the optica
Maser emission plays an important role as a tool in star formation studies. It is widely used for deriving kinematics, as well as the physical conditions of different structures, hidden in the dense environment very close to the young stars, for exam
We investigate the dust attenuation in both stellar populations and ionized gas in kpc-scale regions in nearby galaxies, using integral field spectroscopy data from MaNGA MPL-9. We identify star-forming (HII) and diffuse ionized gas (DIG) regions fro
We investigate the specific angular momentum (sAM) $ j(<r)$ profiles of intermediate redshift ($0.4<z<1.4$) star-forming galaxies (SFGs) in the relatively unexplored regime of low masses (down to $M_starsim 10^8$M$_{odot}$) and small sizes (down to $