ﻻ يوجد ملخص باللغة العربية
We report the first measurement of the temperature dependence of muon transfer rate from $mu$p atoms to oxygen between 100 and 300 K. Data were obtained from the X-ray spectra of delayed events in gaseous target H$_2$/O$_2$ exposed to a muon beam. Based on the data, we determined the muon transfer energy dependence up to 0.1 eV, showing an 8-fold increase in contrast with the predictions of constant rate in the low energy limit. This work set constraints on theoretical models of muon transfer, and is of fundamental importance for the measurement of the hyperfine splitting of $mu$p by the FAMU collaboration.
The first measurement of the temperature dependence of the muon transfer rate from muonic hydrogen to oxygen was performed by the FAMU collaboration in 2016. The results provide evidence that the transfer rate rises with the temperature in the range
Background: The rate lambda_ppmu characterizes the formation of ppmu molecules in collisions of muonic pmu atoms with hydrogen. In measurements of the basic weak muon capture reaction on the proton to determine the pseudoscalar coupling g_P, capture
The FAMU experiment aims to accurately measure the hyperfine splitting of the ground state of the muonic hydrogen atom. A measurement of the transfer rate of muons from hydrogen to heavier gases is necessary for this purpose. In June 2014, within a p
This paper reports the first measurement using the NOvA detectors of $ u_mu$ disappearance in a $ u_mu$ beam. The analysis uses a 14 kton-equivalent exposure of $2.74 times 10^{20}$ protons-on-target from the Fermilab NuMI beam. Assuming the normal n
Studies of muonic hydrogen atoms and molecules have been performed traditionally in bulk targets of gas, liquid or solid. At TRIUMF, Canadas meson facility, we have developed a new type of target system using multilayer thin films of solid hydrogen,