ﻻ يوجد ملخص باللغة العربية
A $t$-bar visibility representation of a graph assigns each vertex up to $t$ horizontal bars in the plane so that two vertices are adjacent if and only if some bar for one vertex can see some bar for the other via an unobstructed vertical channel of positive width. The least $t$ such that $G$ has a $t$-bar visibility representation is the bar visibility number of $G$, denoted by $b(G)$. For the complete bipartite graph $K_{m,n}$, the lower bound $b(K_{m,n})gelceil{frac{mn+4}{2m+2n}}rceil$ from Eulers Formula is well known. We prove that equality holds.
A graph $G$ is $F$-saturated if it contains no copy of $F$ as a subgraph but the addition of any new edge to $G$ creates a copy of $F$. We prove that for $s geq 3$ and $t geq 2$, the minimum number of copies of $K_{1,t}$ in a $K_s$-saturated graph is
Let $mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of
Total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of
Let $ G $ be a graph. A subset $S subseteq V(G) $ is called a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $S$. The total domination number, $gamma_{t}$($G$), is the minimum cardinality of a total dominating set o
It is not hard to find many complete bipartite graphs which are not determined by their spectra. We show that the graph obtained by deleting an edge from a complete bipartite graph is determined by its spectrum. We provide some graphs, each of which