ﻻ يوجد ملخص باللغة العربية
This article proposes a Bayesian approach to estimating the spectral density of a stationary time series using a prior based on a mixture of P-spline distributions. Our proposal is motivated by the B-spline Dirichlet process prior of Edwards et al. (2019) in combination with Whittles likelihood and aims at reducing the high computational complexity of its posterior computations. The strength of the B-spline Dirichlet process prior over the Bernstein-Dirichlet process prior of Choudhuri et al. (2004) lies in its ability to estimate spectral densities with sharp peaks and abrupt changes due to the flexibility of B-splines with variable number and location of knots. Here, we suggest to use P-splines of Eilers and Marx (1996) that combine a B-spline basis with a discrete penalty on the basis coefficients. In addition to equidistant knots, a novel strategy for a more expedient placement of knots is proposed that makes use of the information provided by the periodogram about the steepness of the spectral power distribution. We demonstrate in a simulation study and two real case studies that this approach retains the flexibility of the B-splines, achieves similar ability to accurately estimate peaks due to the new data-driven knot allocation scheme but significantly reduces the computational costs.
In this article, we consider a non-parametric Bayesian approach to multivariate quantile regression. The collection of related conditional distributions of a response vector Y given a univariate covariate X is modeled using a Dependent Dirichlet Proc
We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein
Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic explora
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way
We propose an estimation methodology for a semiparametric quantile factor panel model. We provide tools for inference that are robust to the existence of moments and to the form of weak cross-sectional dependence in the idiosyncratic error term. We apply our method to daily stock return data.