ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron pumping in the strong coupling and non-Markovian regime: A reaction coordinate mapping approach

70   0   0.0 ( 0 )
 نشر من قبل Sebastian Restrepo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study electron pumping in the strong coupling and non-Markovian regime. Our model is a single quantum dot with periodically modulated energy and tunnelling amplitudes. We identify four parameters to control the direction of the current: the driving phase, the coupling strength, the driving frequency and the location of the maxima of the spectral density. In the high-frequency regime, we use a Markovian embedding strategy to map our model to three serial quantum dots weakly coupled to the reservoirs allowing us to use a Floquet master equation. We observe a rectification effect of the pumped charge that is exclusive to the non-Markovian character of our model. In the low-frequency regime, we apply an additional transformation to see our model as three independent transport channels. With the use of full counting statistics, we study charge fluctuations and validate that our model behaves as a single electron source.



قيم البحث

اقرأ أيضاً

We study a model of a thermoelectric nanojunction driven by vibrationally-assisted tunneling. We apply the reaction coordinate formalism to derive a master equation governing its thermoelectric performance beyond the weak electron-vibrational couplin g limit. Employing full counting statistics we calculate the current flow, thermopower, associated noise, and efficiency without resorting to the weak vibrational coupling approximation. We demonstrate intricacies of the power-efficiency-precision trade-off at strong coupling, showing that the three cannot be maximised simultaneously in our model. Finally, we emphasise the importance of capturing non-additivity when considering strong coupling and multiple environments, demonstrating that an additive treatment of the environments can violate the upper bound on thermoelectric efficiency imposed by Carnot.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi ons about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
We present an overview of the reaction coordinate approach to handling strong system-reservoir interactions in quantum thermodynamics. This technique is based on incorporating a collective degree of freedom of the reservoir (the reaction coordinate) into an enlarged system Hamiltonian (the supersystem), which is then treated explicitly. The remaining residual reservoir degrees of freedom are traced out in the usual perturbative manner. The resulting description accurately accounts for strong system-reservoir coupling and/or non-Markovian effects over a wide range of parameters, including regimes in which there is a substantial generation of system-reservoir correlations. We discuss applications to both discrete stroke and continuously operating heat engines, as well as perspectives for additional developments. In particular, we find narrow regimes where strong coupling is not detrimental to the performance of continuously operating heat engines.
139 - M. Bina , G. Romero , J. Casanova 2011
We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution for this open system dynamics in the off-resonance case of the qubit-mo de interaction. Collapses and revivals of parity chain populations and the oscillatory behavior of the mean photon number are predicted. At the same time, photon number wave packets, propagating back and forth along parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning on the validity of the analytical solution.
In this paper we present a method to derive an exact master equation for a bosonic system coupled to a set of other bosonic systems, which plays the role of the reservoir, under the strong coupling regime, i.e., without resorting to either the rotati ng-wave or secular approximations. Working with phase-space distribution functions, we verify that the dynamics are separated in the evolution of its center, which follows classical mechanics, and its shape, which becomes distorted. This is the generalization of a result by Glauber, who stated that coherent states remain coherent under certain circumstances, specifically when the rotating-wave approximation and a zero-temperature reservoir are used. We show that the counter-rotating terms generate fluctuations that distort the vacuum state, much the same as thermal fluctuations.Finally, we discuss conditions for non-Markovian dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا