ﻻ يوجد ملخص باللغة العربية
We study the quantization of coupled Kahler-Einstein (CKE) metrics, namely we approximate CKE metrics by means of the canonical Bergman metrics, so called the ``balanced metrics. We prove the existence and weak convergence of balanced metrics for the negative first Chern class, while for the positive first Chern class, we introduce some algebro-geometric obstruction which interpolates between the Donaldson-Futaki invariant and Chow weight. Then we show the existence and weak convergence of balanced metrics on CKE manifolds under the vanishing of this obstruction. Moreover, restricted to the case when the automorphism group is discrete, we also discuss approximate solutions and a gradient flow method towards the smooth convergence.
In this paper, we introduce the coupled Ricci iteration, a dynamical system related to the Ricci operator and twisted Kahler-Einstein metrics as an approach to the study of coupled Kahler-Einstein (CKE) metrics. For negative first Chern class, we pro
The existence of emph{weak conical Kahler-Einstein} metrics along smooth hypersurfaces with angle between $0$ and $2pi$ is obtained by studying a smooth continuity method and a emph{local Mosers iteration} technique. In the case of negative and zero
The requirement that a (non-Einstein) Kahler metric in any given complex dimension $m>2$ be almost-everywhere conformally Einstein turns out to be much more restrictive, even locally, than in the case of complex surfaces. The local biholomorphic-isom
In this note we prove convexity, in the sense of Colding-Naber, of the regular set of solutions to some complex Monge-Ampere equations with conical singularities along simple normal crossing divisors. In particular, any two points in the regular set
We prove the existence of Kahler-Einstein metrics on Q-Gorenstein smoothable, K-polystable Q-Fano varieties, and we show how these metrics behave, in the Gromov-Hausdorff sense, under Q-Gorenstein smoothings.