ﻻ يوجد ملخص باللغة العربية
We implement the no-boundary proposal for the wave function of the universe in an exactly solvable Bianchi IX minisuperspace model with two scale factors. We extend our earlier work (Phys. Rev. Lett. 121, 081302, 2018 / arXiv:1804.01102) to include the contribution from the $mathbb{C}text{P}^2 setminus B^4$ topology. The resulting wave function yields normalizable probabilities and thus fits into a predictive framework for semiclassical quantum cosmology. We find that the amplitude is low for large anisotropies. In the isotropic limit the usual Hartle-Hawking wave function for the de Sitter minisuperspace model is recovered. Inhomogeneous perturbations in an extended minisuperspace are shown to be initially in their ground state. We also demonstrate that the precise mathematical implementation of the no-boundary proposal as a functional integral in minisuperspace depends on detailed aspects of the model, including the choice of gauge-fixing. This shows in particular that the choice of contour cannot be fundamental, adding weight to the recent proposal that the semiclassical no-boundary wave function should be defined solely in terms of a collection of saddle points. We adopt this approach in most of this paper. Finally we show that the semiclassical tunneling wave function of the universe is essentially equal to the no-boundary state in this particular minisuperspace model, at least in the subset of the classical domain where the former is known.
The dynamics of the most general Bianchi IX cosmology with three time dependent scale factors for the Einstein-Skyrme system is analyzed. For the Skyrmion, a generalized hedgehog ansatz with unit baryon charge is introduced. The most remarkable featu
The canonical quantum theory of gravity -- Quantum Geometrodynamics (QG) is applied to the homogeneous Bianchi type IX cosmological model. As a result, the framework for the quantum theory of homogeneous cosmologies is developed. We show that the the
In this paper we study the exact solutions for a viscous fluid distribution in Bianchi II, VIII, and IX models. The metric is simplified by assuming a relationship between the coefficients and the metric tensor. Solutions are obtained in two special
In this paper, we study a class of symmetry reduced models of $mathcal{N}=1$ supergravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by DEath et al. We show that the essential part of the constra
In recent work, we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our m