ﻻ يوجد ملخص باللغة العربية
Most recent numerical simulations suggest that bipolar HII regions, powered by O-type stars, can be formed at the interface of two colliding clouds. To observationally understand the birth of O-type stars, we present a detailed multi-wavelength analysis of an area of 1 deg x 1 deg hosting G8.14+0.23 HII region associated with an infrared bipolar nebula (BPN). Based on the radio continuum map, the HII region is excited by at least an O-type star, which is located toward the waist of the BPN. The NANTEN2 13CO line data reveal the existence of two extended clouds at [9, 14.3] and [15.3, 23.3] km/s toward the site G8.14+0.23, which are connected in the position-velocity space through a broad-bridge feature at the intermediate velocity range. A cavity/intensity-depression feature is evident in the blueshifted cloud, and is spatially matched by the elongated redshifted cloud. The spatial and velocity connections of the clouds suggest their interaction in the site G8.14+0.23. The analysis of deep near-infrared photometric data reveals the presence of clusters of infrared-excess sources, illustrating ongoing star formation activities in both the clouds. The O-type star is part of the embedded cluster seen in the waist of the BPN, which is observed toward the spatial matching zone of the cavity and the redshifted cloud. The observational results appear to be in reasonable agreement with the numerical simulations of cloud-cloud collision (CCC), suggesting that the CCC process seems to be responsible for the birth of the O-type star in G8.14+0.23.
We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H,{ ormalsize II} regions in turbulent, magnetised, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on t
Spectral line survey observations of 7 molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamenta
The H II region RCW120 is a well-known object, which is often considered as a target to verify theoretical models of gas and dust dynamics in the interstellar medium. However, the exact geometry of RCW120 is still a matter of debate. In this work, we
S106 is one of the best known bipolar HII regions, thoroughly studied and modelled at infrared, submillimeter and millimeter wavelengths, and it is one of the nearest examples of the late stages of massive star formation in which the newly formed sta
We present new Very Large Array 6cm H2CO observations toward four extragalactic radio continuum sources (B0212+735, 3C111, NRAO150, BL Lac) to explore the structure of foreground Galactic clouds as revealed by absorption variability. This project add