ﻻ يوجد ملخص باللغة العربية
Entropy is a fundamental concept from Thermodynamics and it can be used to study models on context of Creation Cold Dark Matter (CCDM). From conditions on the first ($dot{S}geq0$)footnote{Throughout the present work we will use dots to indicate time derivatives and dashes to indicate derivatives with respect to scale factor.} and second order ($ddot{S}<0$) time derivatives of total entropy in the initial expansion of Sitter through the radiation and matter eras until the end of Sitter expansion, it is possible to estimate the intervals of parameters. The total entropy ($S_{t}$) is calculated as sum of the entropy at all eras ($S_{gamma}$ and $S_{m}$) plus the entropy of the event horizon ($S_h$). This term derives from the Holographic Principle where it suggests that all information is contained on the observable horizon. The main feature of this method for these models are that thermodynamic equilibrium is reached in a final de Sitter era. Total entropy of the universe is calculated with three terms: apparent horizon ($S_{h}$), entropy of matter ($S_{m}$) and entropy of radiation ($S_{gamma}$). This analysis allows to estimate intervals of parameters of CCDM models.
The matter creation model of Prigogine--Geheniau--Gunzig--Nardone is revisited in terms of a redefined creation pressure which does not lead to irreversible adiabatic evolution at constant specific entropy. With the resulting freedom to choose a part
We explore the cosmological implications at effective level of matter creation effects in a dissipative fluid for a FLRW geometry; we also perform a statistical analysis for this kind of model. By considering an inhomogeneous Ansatz for the particle
If a significant fraction of dark matter is in the form of compact objects, they will cause microlensing effects in the gravitational wave (GW) signals observable by LIGO and Virgo. From the non-observation of microlensing signatures in the binary bl
In light of the cosmological observations, we investigate dark energy models from the Horndeski theory of gravity. In particular, we consider cosmological models with the derivative self-interaction of the scalar field and the derivative coupling bet
Using recent experimental results of detection of gravitational waves from the binary black hole signals by Advanced LIGO and Advanced Virgo, we investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally co