Flat Bands in Buckled Graphene Superlattices


الملخص بالإنكليزية

Interactions between stacked two-dimensional (2D) atomic crystals can radically change their properties, leading to essentially new materials in terms of the electronic structure. Here we show that monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition, which results in periodically strained superlattices. By using scanning tunneling microscopy and spectroscopy and support from numerical simulations, we show that such lateral superlattices in graphene lead to a periodically modulated pseudo-magnetic field, which in turn creates a post-graphene material with flat electronic bands. The described approach of controllable buckling of 2D crystals offers a venue for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

تحميل البحث