ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybridization-induced resonances with high quality factor in a plasmonic concentric ring-disk nanocavity

116   0   0.0 ( 0 )
 نشر من قبل Zhaojian Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasmonic resonators have drawn more attention due to the ability to confine light into subwavelength scale. However, they always suffer from a low quality (Q) factor owing to the intrinsic loss of metal. Here, we numerically propose a plasmonic resonator with ultra-high Q factor based on plasmonic metal-insulator-metal (MIM) waveguide structures. The resonator consists of a disk cavity surrounded by a concentric ring cavity, possessing an ultra-small volume. Arising from the plasmon hybridization between plasmon modes in the disk and ring cavity, the induced bonding hybridized modes have ultra-narrow full wave at half maximum (FWHM) as well as ultra-high Q factors. The FWHM can be nearly 1 nm and Q factor can be more than 400. Furthermore, such device can act as a refractive index sensor with ultra-high figure of merit (FOM). This work provides a novel approach to design plasmonic high-Q-factor resonators, and has potential on-chip applications such as filters, sensors and nanolasers.



قيم البحث

اقرأ أيضاً

Resonance is instrumental in modern optics and photonics for novel phenomena such as cavity quantum electrodynamics and electric-field-induced transparency. While one can use numerical simulations to sweep geometric and material parameters of optical structures, these simulations usually require considerably long calculation time (spanning from several hours to several weeks) and substantial computational resources. Such requirements significantly limit their applicability in understanding and inverse designing structures with desired resonance performances. Recently, the introduction of artificial intelligence allows for faster predictions of resonance with less demanding computational requirements. However, current end-to-end deep learning approaches generally fail to predict resonances with high quality-factors (Q-factor). Here, we introduce a universal deep learning strategy that can predict ultra-high Q-factor resonances by decomposing spectra with an adaptive data acquisition (ADA) method while incorporating resonance information. We exploit bound states in the continuum (BICs) with an infinite Q-factor to testify this resonance-informed deep learning (RIDL) strategy. The trained RIDL strategy achieves high-accuracy prediction of reflection spectra and photonic band structures while using a considerably small training dataset. We further develop an inverse design algorithm based on the RIDL strategy for a symmetry-protected BIC on a suspended silicon nitride photonic crystal (PhC) slab. The predicted and measured angle-resolved band structures show minimum differences. We expect the RIDL strategy to apply to many other physical phenomena which exhibit Gaussian, Lorentzian, and Fano resonances.
Nonlinear metasurfaces offer new paradigm for boosting optical effect beyond limitations of conventional materials. In this work, we present an alternative way to produce pronounced third-harmonic generation (THG) based on nonlinear field resonances rather than linear field enhancement, which is a typical strategy for achieving strong nonlinear response. By designing and studying a nonlinear plasmonic-graphene metasurface at terahertz regime with hybrid guided modes and bound states in the continuum modes, it is found that a THG with a narrow bandwidth can be observed, thanks to the strong resonance between generated weak THG field and these modes. Such strong nonlinear field resonance greatly enhances the photon-photon interactions, thus resulting in a large effective nonlinear coefficient of the whole system. This finding provides new opportunity for studying nonlinear optical metasurfaces.
We present high quality factor optical nanoresonators operating in the mid-IR to far-IR based on phonon polaritons in van der Waals materials. The nanoresonators are disks patterned from isotopically pure hexagonal boron nitride (isotopes 10B and 11B ) and {alpha}-molybdenum trioxide. We experimentally achieved quality factors of nearly 400, the highest ever observed in nano-resonators at these wavelengths. The excited modes are deeply subwavelength, and the resonators are 10 to 30 times smaller than the exciting wavelength. These results are very promising for the realization of nano-photonics devices such as optical bio-sensors and miniature optical components such as polarizers and filters.
271 - Hai-bin Lu , Xiaoping Liu 2017
In this paper, we investigate numerically the trapped modes with near zero group velocities supported in the ring array composed of dielectric nanorods, based on a two-dimensional model. Two sorts of trapped modes in the ring array have been identifi ed: the BCR trapped modes which correspond to the bound modes below the light line at the edge of the first Brillouin zone in the corresponding planar structure (namely the infinite linear chain); the quasi-BIC trapped modes corresponding to the bound states in the continuum supported in the infinite linear chain. According to the whispering gallery condition, the BCR trapped modes can be supported in the ring array only when the number of dielectric elements N is even, while the quasi-BIC ones always exist no matter whether N is odd or even. For both two kind of trapped modes, the lowest one of each kind possesses the highest Q factor, which are ~105 for BCR kind and ~1011 for quasi-BIC kind with N=16 respectively, and the radiation loss increases dramatically as the structural resonance increases. Finally, the behavior of the Q factor with N is explained numerically for the lowest one of each kind of trapped modes. The Q factor scales as Q~exp(0.662N) for the quasi-BIC trapped mode and Q~exp(0.325N) for the BCR one. Intriguingly, the Q factor of the quasi-BIC trapped mode can be as large as ~105 even at N=8. Compared to the finite linear chain, the structure of ring array exhibits overwhelming advantage in Q factor with the same N because there is no array-edge radiation loss in the ring array. We note that the principles can certainly be extended to particles of other shapes (such as nanospheres, nanodisks, and many other experimentally feasible geometries).
Plasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absor ption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا