ﻻ يوجد ملخص باللغة العربية
Big data solutions are designed to cope with data of huge Volume and wide Variety, that need to be ingested at high Velocity and have potential Veracity issues, challenging characteristics that are usually referred to as the 4Vs of Big Data. In order to evaluate possibly complex big data solutions, stress tests require to assess a large number of combinations of sub-components jointly with the possible big data variations. A formalization of the Design of Experiments (DoE) on big data solutions is aimed at ensuring the reproducibility of the experiments, facilitating their partitioning in sub-experiments and guaranteeing the consistency of their outcomes in a global assessment. In this paper, an ontology-based approach is proposed to support the evaluation of a big data system in two ways. Firstly, the approach formalizes a decomposition and recombination of the big data solution, allowing for the aggregation of component evaluation results at inter-component level. Secondly, existing work on DoE is translated into an ontology for supporting the selection of experiments. The proposed ontology-based approach offers the possibility to combine knowledge from the evaluation domain and the application domain. It exploits domain and inter-domain specific restrictions on the factor combinations in order to reduce the number of experiments. Contrary to existing approaches, the proposed use of ontologies is not limited to the assertional description and exploitation of past experiments but offers richer terminological descriptions for the development of a DoE from scratch. As an application example, a maritime big data solution to the problem of detecting and predicting vessel suspicious behaviour through mobility analysis is selected. The article is concluded with a sketch of future works.
Many formal languages have been proposed to express or represent Ontologies, including RDF, RDFS, DAML+OIL and OWL. Most of these languages are based on XML syntax, but with various terminologies and expressiveness. Therefore, choosing a language for
Populating ontology graphs represents a long-standing problem for the Semantic Web community. Recent advances in translation-based graph embedding methods for populating instance-level knowledge graphs lead to promising new approaching for the ontolo
Considering the high heterogeneity of the ontologies pub-lished on the web, ontology matching is a crucial issue whose aim is to establish links between an entity of a source ontology and one or several entities from a target ontology. Perfectible si
Model-based systems engineering (MBSE) provides an important capability for managing the complexities of system development. MBSE empowers the formalisms of system architectures for supporting model-based requirement elicitation, specification, desig
The development of artificial general intelligence is considered by many to be inevitable. What such intelligence does after becoming aware is not so certain. To that end, research suggests that the likelihood of artificial general intelligence becom