ترغب بنشر مسار تعليمي؟ اضغط هنا

Headline Generation: Learning from Decomposable Document Titles

87   0   0.0 ( 0 )
 نشر من قبل Oleg Vasilyev
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel method for generating titles for unstructured text documents. We reframe the problem as a sequential question-answering task. A deep neural network is trained on document-title pairs with decomposable titles, meaning that the vocabulary of the title is a subset of the vocabulary of the document. To train the model we use a corpus of millions of publicly available document-title pairs: news articles and headlines. We present the results of a randomized double-blind trial in which subjects were unaware of which titles were human or machine-generated. When trained on approximately 1.5 million news articles, the model generates headlines that humans judge to be as good or better than the original human-written headlines in the majority of cases.



قيم البحث

اقرأ أيضاً

This paper explores a variant of automatic headline generation methods, where a generated headline is required to include a given phrase such as a company or a product name. Previous methods using Transformer-based models generate a headline includin g a given phrase by providing the encoder with additional information corresponding to the given phrase. However, these methods cannot always include the phrase in the generated headline. Inspired by previous RNN-based methods generating token sequences in backward and forward directions from the given phrase, we propose a simple Transformer-based method that guarantees to include the given phrase in the high-quality generated headline. We also consider a new headline generation strategy that takes advantage of the controllable generation order of Transformer. Our experiments with the Japanese News Corpus demonstrate that our methods, which are guaranteed to include the phrase in the generated headline, achieve ROUGE scores comparable to previous Transformer-based methods. We also show that our generation strategy performs better than previous strategies.
Paraphrasing exists at different granularity levels, such as lexical level, phrasal level and sentential level. This paper presents Decomposable Neural Paraphrase Generator (DNPG), a Transformer-based model that can learn and generate paraphrases of a sentence at different levels of granularity in a disentangled way. Specifically, the model is composed of multiple encoders and decoders with different structures, each of which corresponds to a specific granularity. The empirical study shows that the decomposition mechanism of DNPG makes paraphrase generation more interpretable and controllable. Based on DNPG, we further develop an unsupervised domain adaptation method for paraphrase generation. Experimental results show that the proposed model achieves competitive in-domain performance compared to the state-of-the-art neural models, and significantly better performance when adapting to a new domain.
The encoder-decoder model is widely used in natural language generation tasks. However, the model sometimes suffers from repeated redundant generation, misses important phrases, and includes irrelevant entities. Toward solving these problems we propo se a novel source-side token prediction module. Our method jointly estimates the probability distributions over source and target vocabularies to capture a correspondence between source and target tokens. The experiments show that the proposed model outperforms the current state-of-the-art method in the headline generation task. Additionally, we show that our method has an ability to learn a reasonable token-wise correspondence without knowing any true alignments.
Browsing news articles on multiple devices is now possible. The lengths of news article headlines have precise upper bounds, dictated by the size of the display of the relevant device or interface. Therefore, controlling the length of headlines is es sential when applying the task of headline generation to news production. However, because there is no corpus of headlines of multiple lengths for a given article, previous research on controlling output length in headline generation has not discussed whether the system outputs could be adequately evaluated without multiple references of different lengths. In this paper, we introduce two corpora, which are Japanese News Corpus (JNC) and JApanese MUlti-Length Headline Corpus (JAMUL), to confirm the validity of previous evaluation settings. The JNC provides common supervision data for headline generation. The JAMUL is a large-scale evaluation dataset for headlines of three different lengths composed by professional editors. We report new findings on these corpora; for example, although the longest length reference summary can appropriately evaluate the existing methods controlling output length, this evaluation setting has several problems.
206 - Qingyang Wu , Lei Li , Hao Zhou 2019
Many social media news writers are not professionally trained. Therefore, social media platforms have to hire professional editors to adjust amateur headlines to attract more readers. We propose to automate this headline editing process through neura l network models to provide more immediate writing support for these social media news writers. To train such a neural headline editing model, we collected a dataset which contains articles with original headlines and professionally edited headlines. However, it is expensive to collect a large number of professionally edited headlines. To solve this low-resource problem, we design an encoder-decoder model which leverages large scale pre-trained language models. We further improve the pre-trained models quality by introducing a headline generation task as an intermediate task before the headline editing task. Also, we propose Self Importance-Aware (SIA) loss to address the different levels of editing in the dataset by down-weighting the importance of easily classified tokens and sentences. With the help of Pre-training, Adaptation, and SIA, the model learns to generate headlines in the professional editors style. Experimental results show that our method significantly improves the quality of headline editing comparing against previous methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا