ﻻ يوجد ملخص باللغة العربية
The comparative study of structural, electronic properties, topology of the Fermi surface, and the features of chemical bonding in layered 1111-oxyarsenides LaRhAsO and LaIrAsO has been performed based on the results of ab initio modeling of their electronic structure. It was established that only weak sensitivity with respect both to electron and hole doping is expected for LaIrAsO being non-magnetic metal, however, the Rh-containing compound should be characterized with weak band magnetism, and the hole doping is expected to be able to move its ground state away from the boundary of magnetic instability. The mentioned feature allows to consider LaRhAsO oxyarsenide as a possible electron analogue of LaFeAsO compound being the initial phase for the layered FeAs-superconductors.
We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector au
Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without
We present a Density Functional Theory (DFT) based study of the structural and magnetic properties of the (001) surface of the semiconducting oxide ZnFe2O4 (spinel structure). The calculations were performed using the DFT based ab initio plane wave a
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressur
First-principle FLAPW-GGA band structure calculations are employed to obtain the structural, electronic properties and chemical bonding picture for two related layered phases, namely, quaternary oxyarsenides LaZnAsO and YZnAsO. These compounds are fo