ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural, electronic properties and the features of chemical bonding in layered 1111-oxyarsenides LaRhAsO and LaIrAsO: ab initio modeling

74   0   0.0 ( 0 )
 نشر من قبل Slava Bannikov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The comparative study of structural, electronic properties, topology of the Fermi surface, and the features of chemical bonding in layered 1111-oxyarsenides LaRhAsO and LaIrAsO has been performed based on the results of ab initio modeling of their electronic structure. It was established that only weak sensitivity with respect both to electron and hole doping is expected for LaIrAsO being non-magnetic metal, however, the Rh-containing compound should be characterized with weak band magnetism, and the hole doping is expected to be able to move its ground state away from the boundary of magnetic instability. The mentioned feature allows to consider LaRhAsO oxyarsenide as a possible electron analogue of LaFeAsO compound being the initial phase for the layered FeAs-superconductors.



قيم البحث

اقرأ أيضاً

We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector au gmented wave method within the generalized gradient approximation. Structural properties {it viz.} geometry, bond length, symmetry and electronic properties like HOMO-LUMO gap, binding energy, ionization potential and nature of bonding {it etc.} have been analyzed. Medium sized non-stoichiometric clusters were considered as fragments of the bulk with T{$_{d}$} symmetry. It was observed that upon relaxation, the symmetry changes for the Cd rich clusters whereas the Te rich clusters retain their symmetry. The Cd rich clusters develop a HOMO-LUMO gap due to relaxation whereas there is no change in the HOMO-LUMO gap of the Te rich clusters. Thus, the symmetry of a cluster seems to be an important factor in determining the HOMO-LUMO gap.
Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without the presence of long-range magnetic order, whereas NaOsO$_3$ is a $G$-type antiferromagnetic insulator with an orthorhombic $Pnma$ structure. By means of comparative first-principles DFT+$U$ calculations with the inclusion of the spin-orbit coupling, we ($i$) identify the origin of the different structural ($R3c$ vs. $Pnma$) properties using a symmetry-adapted soft mode analysis, ($ii$) provide evidence that all considered exchange-correlation functionals (LDA, PBE, PBEsol, SCAN, and HSE06) and the spin disordered polymorphous descriptions are unsatisfactory to accurately describe the electronic and magnetic properties of both systems simultaneously, and ($iii$) clarify that the distinct electronic (metallic vs. insulating) properties originates mainly from a cooperative steric and magnetic effect. Finally, we find that although at ambient pressure LiOsO$_3$ with a $Pnma$ symmetry and NaOsO$_3$ with a $Rbar{3}c$ symmetry are energetically unfavorable, they do not show soft phonons and therefore are dynamically stable. A pressure-induced structural phase transition from $R3c$ to $Pnma$ for LiOsO$_3$ is predicted, whereas for NaOsO$_3$ no symmetry change is discerned in the considered pressure range.
We present a Density Functional Theory (DFT) based study of the structural and magnetic properties of the (001) surface of the semiconducting oxide ZnFe2O4 (spinel structure). The calculations were performed using the DFT based ab initio plane wave a nd pseudopotential method as implemented in the Quantum Espresso code. The all electron Full-potential linearized-augmented-plane-wave method (FP-LAPW) was also employed to check the accuracy of plane wave method. In both calculations the DFT+U methodology was employed and different (001) surface terminations of ZnFe2O4 were studied: We find that the surface terminated in Zn is the stable one. For all the (001) surface terminations our calculations predict that the Zn-Fe cationic inversion (antisites), which are defects in bulk ZnFe2O4, becomes stable and an integral part of the surface. Also, a ferrimagnetic behavior is predicted for the case of antisites in the superficial layer. Our results for different properties of the surface of ZnFe2O4 are compared with those obtained in bulk samples and those reported in the literature.
We report a detailed ab initio investigation on hydrogen bonding, geometry, electronic structure, and lattice dynamics of ice under a large high pressure range, including the ice X phase (55-380GPa), the previous theoretically proposed higher-pressur e phase ice XIIIM (Refs. 1-2) (380GPa), ice XV (a new structure we derived from ice XIIIM) (300-380GPa), as well as the ambient pressure low-temperature phase ice XI. Different from many other materials, the band gap of ice X is found to be increasing linearly with pressure from 55GPa up to 290GPa, the electronic density of states (DOS) shows that the valence bands have a tendency of red shift (move to lower energies) referring to the Fermi energy while the conduction bands have a blue shift (move to higher energies). This behavior is interpreted as the high pressure induced change of s-p charge transfers between hydrogen and oxygen. It is found that ice X exists in the pressure range from 75GPa to about 290GPa. Beyond 300GPa, a new hydrogen-bonding structure with 50% hydrogen atoms in symmetric positions in O-H-O bonds and the other half being asymmetric, ice XV, is identified. The physical mechanism for this broken symmetry in hydrogen bonding is revealed.
First-principle FLAPW-GGA band structure calculations are employed to obtain the structural, electronic properties and chemical bonding picture for two related layered phases, namely, quaternary oxyarsenides LaZnAsO and YZnAsO. These compounds are fo und to be direct-transition type semiconductors with the GGA gaps of about 0.65-1.30 eV. The peculiarities of chemical bonding in these phases are investigated and discussed in comparison with quaternary oxyarsenide LaFeAsO - a basic phase for the newly discovered 26-52K superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا