ﻻ يوجد ملخص باللغة العربية
Silicon Photo-Multipliers (SiPMs) are detectors sensitive to single photons that are used to detect scintillation and Cherenkov light in a variety of physics and medical-imaging applications. SiPMs measure single photons by amplifying the photo-generated carriers (electrons or holes) via a Geiger-mode avalanche. The Photon Detection Efficiency (PDE) is the combined probability that a photon is absorbed in the active volume of the device with a subsequently triggered avalanche. Absorption and avalanche triggering probabilities are correlated since the latter probability depends on where the photon is absorbed. In this paper, we introduce a physics motivated parameterization of the avalanche triggering probability that describes the PDE of a SiPM as a function of its reverse bias voltage, at different wavelengths. This parameterization is based on the fact that in p-on-n SiPMs the induced avalanches are electron-driven in the ultra-violet and near-ultra-violet ranges, while they become increasingly hole-driven towards the near-infra-red range. The model has been successfully applied to characterize two Hamamatsu MPPCs and one FBK SiPM, and it can be extended to other SiPMs. Furthermore, this model provides key insight on the electric field structure within SiPMs, which can explain the limitation of existing devices and be used to optimize the performance of future SiPMs.
We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH). The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 uW), d
Particle detectors based on liquid argon are now recognised as an attractive technology for dark matter direct detection and coherent elastic neutrino-nucleus scattering measurement. A program using a dual-phase liquid argon detector with a fiducial
The discrete modeling of the Geiger-mode APD is considered. Results of modeling and experimental measurements with the SiPM show that the known formula for the charge of the avalanche pulse Q=dU*Cd underestimates its value. In addition, it is seen fr
PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics e
We present the first operation of the Avalanche Photodiode (APD) from Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9 keV. A large non-linear response was observed for the direct X-ray detection. At 415 V APD bias volt