ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of SiPM Avalanche Triggering Probabilities

120   0   0.0 ( 0 )
 نشر من قبل Giacomo Gallina
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon Photo-Multipliers (SiPMs) are detectors sensitive to single photons that are used to detect scintillation and Cherenkov light in a variety of physics and medical-imaging applications. SiPMs measure single photons by amplifying the photo-generated carriers (electrons or holes) via a Geiger-mode avalanche. The Photon Detection Efficiency (PDE) is the combined probability that a photon is absorbed in the active volume of the device with a subsequently triggered avalanche. Absorption and avalanche triggering probabilities are correlated since the latter probability depends on where the photon is absorbed. In this paper, we introduce a physics motivated parameterization of the avalanche triggering probability that describes the PDE of a SiPM as a function of its reverse bias voltage, at different wavelengths. This parameterization is based on the fact that in p-on-n SiPMs the induced avalanches are electron-driven in the ultra-violet and near-ultra-violet ranges, while they become increasingly hole-driven towards the near-infra-red range. The model has been successfully applied to characterize two Hamamatsu MPPCs and one FBK SiPM, and it can be extended to other SiPMs. Furthermore, this model provides key insight on the electric field structure within SiPMs, which can explain the limitation of existing devices and be used to optimize the performance of future SiPMs.



قيم البحث

اقرأ أيضاً

We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH). The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 uW), d ark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer.
110 - L.Wang , M.Y.Guan , H.J.Qin 2021
Particle detectors based on liquid argon are now recognised as an attractive technology for dark matter direct detection and coherent elastic neutrino-nucleus scattering measurement. A program using a dual-phase liquid argon detector with a fiducial mass of 200~kg to detect coherent elastic neutrino-nucleus scattering at Taishan Nuclear Power Plant has been proposed. SiPMs will be used as the photon sensor because of their high radio-purity and high photon detection efficiency. S13370-6050CN SiPM, made by Hamamatsu, is a candidate for the detector. In this paper, the characterisation of S13370-6050CN SiPM, including the cross talk and after pulse probabilities at liquid argon temperature and the temperature dependence of break down voltage, dark counting rate and relative quantum efficiency were presented.
The discrete modeling of the Geiger-mode APD is considered. Results of modeling and experimental measurements with the SiPM show that the known formula for the charge of the avalanche pulse Q=dU*Cd underestimates its value. In addition, it is seen fr om the dynamic of the avalanche multiplication that the resistor Rq in photodiode, usually called a quenching resistor, in reality fulfills only the restoring function. The SiPM restoring time, taken into account the number of pixel N and the load resistance R, is T=Cd*(Rq+NR).
PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics e xperiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.
We present the first operation of the Avalanche Photodiode (APD) from Hamamatsu to xenon scintillation light and to direct X-rays of 22.1 keV and 5.9 keV. A large non-linear response was observed for the direct X-ray detection. At 415 V APD bias volt age it was of about 30 % for 22.1 keV and about 45 % for 5.9 keV. The quantum efficiency for 172 nm photons has been measured to be 69 +/- 15 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا