ترغب بنشر مسار تعليمي؟ اضغط هنا

Relational flexibility of network elements based on inconsistent community detection

133   0   0.0 ( 0 )
 نشر من قبل Sang Hoon Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Community identification of network components enables us to understand the mesoscale clustering structure of networks. A number of algorithms have been developed to determine the most likely community structures in networks. Such a probabilistic or stochastic nature of this problem can naturally involve the ambiguity in resultant community structures. More specifically, stochastic algorithms can result in different community structures for each realization in principle. In this study, instead of trying to solve this community degeneracy problem, we turn the tables by taking the degeneracy as a chance to quantify how strong companionship each node has with other nodes. For that purpose, we define the concept of companionship inconsistency that indicates how inconsistently a node is identified as a member of a community regarding the other nodes. Analyzing model and real networks, we show that companionship inconsistency discloses unique characteristics of nodes, thus we suggest it as a new type of node centrality. In social networks, for example, companionship inconsistency can classify outsider nodes without firm community membership and promiscuous nodes with multiple connections to several communities. In infrastructure networks such as power grids, it can diagnose how the connection structure is evenly balanced in terms of power transmission. Companionship inconsistency, therefore, abstracts individual nodes intrinsic property on its relationship to a higher-order organization of the network.



قيم البحث

اقرأ أيضاً

Modern statistical modeling is an important complement to the more traditional approach of physics where Complex Systems are studied by means of extremely simple idealized models. The Minimum Description Length (MDL) is a principled approach to stati stical modeling combining Occams razor with Information Theory for the selection of models providing the most concise descriptions. In this work, we introduce the Boltzmannian MDL (BMDL), a formalization of the principle of MDL with a parametric complexity conveniently formulated as the free-energy of an artificial thermodynamic system. In this way, we leverage on the rich theoretical and technical background of statistical mechanics, to show the crucial importance that phase transitions and other thermodynamic concepts have on the problem of statistical modeling from an information theoretic point of view. For example, we provide information theoretic justifications of why a high-temperature series expansion can be used to compute systematic approximations of the BMDL when the formalism is used to model data, and why statistically significant model selections can be identified with ordered phases when the BMDL is used to model models. To test the introduced formalism, we compute approximations of BMDL for the problem of community detection in complex networks, where we obtain a principled MDL derivation of the Girvan-Newman (GN) modularity and the Zhang-Moore (ZM) community detection method. Here, by means of analytical estimations and numerical experiments on synthetic and empirical networks, we find that BMDL-based correction terms of the GN modularity improve the quality of the detected communities and we also find an information theoretic justification of why the ZM criterion for estimation of the number of network communities is better than alternative approaches such as the bare minimization of a free energy.
We consider an approach for community detection in time-varying networks. At its core, this approach maintains a small sketch graph to capture the essential community structure found in each snapshot of the full network. We demonstrate how the sketch can be used to explicitly identify six key community events which typically occur during network evolution: growth, shrinkage, merging, splitting, birth and death. Based on these detection techniques, we formulate a community detection algorithm which can process a network concurrently exhibiting all processes. One advantage afforded by the sketch-based algorithm is the efficient handling of large networks. Whereas detecting events in the full graph may be computationally expensive, the small size of the sketch allows changes to be quickly assessed. A second advantage occurs in networks containing clusters of disproportionate size. The sketch is constructed such that there is equal representation of each cluster, thus reducing the possibility that the small clusters are lost in the estimate. We present a new standardized benchmark based on the stochastic block model which models the addition and deletion of nodes, as well as the birth and death of communities. When coupled with existing benchmarks, this new benchmark provides a comprehensive suite of tests encompassing all six community events. We provide a set of numerical results demonstrating the advantages of our approach both in run time and in the handling of small clusters.
380 - Hua-Wei Shen , Xue-Qi Cheng 2010
Spectral analysis has been successfully applied at the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlat ion matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question through evaluating the effectiveness of these five matrices against the benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain desired benefits from using the configuration model as reference network with the consideration of the node degree heterogeneity.
Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of this restriction on social gro up structure. We construct a social network of individuals whose most frequent geographical locations are also known. We also classify the individuals into groups according to a community detection algorithm. We study the variation of geographical span for social groups of varying sizes, and explore the relationship between topological positions and geographic positions of their members. We find that small social groups are geographically very tight, but become much more clumped when the group size exceeds about 30 members. Also, we find no correlation between the topological positions and geographic positions of individuals within network communities. These results suggest that spreading processes face distinct structural and spatial constraints.
Real networks are finite metric spaces. Yet the geometry induced by shortest path distances in a network is definitely not its only geometry. Other forms of network geometry are the geometry of latent spaces underlying many networks, and the effectiv e geometry induced by dynamical processes in networks. These three approaches to network geometry are all intimately related, and all three of them have been found to be exceptionally efficient in discovering fractality, scale-invariance, self-similarity, and other forms of fundamental symmetries in networks. Network geometry is also of great utility in a variety of practical applications, ranging from the understanding how the brain works, to routing in the Internet. Here, we review the most important theoretical and practical developments dealing with these approaches to network geometry in the last two decades, and offer perspectives on future research directions and challenges in this novel frontier in the study of complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا