ﻻ يوجد ملخص باللغة العربية
Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanitys place within it. Recent work indicates that a solar systems X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years.
Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar Syste
We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey.
This is a white paper submitted in response to the call from the Astro2020 Decadal Survey Committee. We outline the scientific progress that will be made in the next few decades in the study of supernova remnants in the X-ray band, using observatories like Athena, Lynx, and AXIS.
Practically all known planet hosts will evolve into white dwarfs, and large parts of their planetary systems will survive this transition - the same is true for the solar system beyond the orbit of Mars. Spectroscopy of white dwarfs accreting planeta
Ultra-compact binaries (UCBs) are systems containing compact or degenerate stars with orbital periods less than one hour. Tens of millions of UCBs are predicted to exist within theGalaxy emitting gravitational waves (GWs) at mHz frequencies. Combinin