ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Studies of Exoplanets: A 2020 Decadal Survey White Paper

116   0   0.0 ( 0 )
 نشر من قبل Scott J. Wolk
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Scott J. Wolk




اسأل ChatGPT حول البحث

Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanitys place within it. Recent work indicates that a solar systems X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years.



قيم البحث

اقرأ أيضاً

Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar Syste m is surprisingly rich and diverse in X-ray emitting objects. The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. X-ray fluorescence (XRF) lines, triggered either by solar X-rays or energetic ions, are intrinsic to atomic energy levels and carry an unambiguous signature of the elemental composition of the emitting bodies. All remote-sensing XRF spectrometers used so far on planetary orbiters have been collimated instruments, with limited achievable spatial resolution, and many have used archaic X-ray detectors with poor energy resolution. Focusing X-ray optics provide true spectroscopic imaging and are used widely in astrophysics missions, but until now their mass and volume have been too large for resource-limited in-situ planetary missions. Recent advances in X-ray instrumentation such as the Micro-Pore Optics used on the BepiColombo X-ray instrument (Fraser et al., 2010), Miniature X-ray Optics (Hong et al., 2016) and highly radiation tolerant CMOS X-ray sensors (e.g., Kenter et al., 2012) enable compact, yet powerful, truly focusing X-ray Imaging Spectrometers. Such instruments will enable compositional measurements of planetary bodies with much better spatial resolution and thus open a large new discovery space in planetary science, greatly enhancing our understanding of the nature and origin of diverse planetary bodies. Here, we discuss many examples of the power of XRF to address key science questions across the solar system.
We provide an overview of the science case, instrument configuration and project plan for the next-generation ground-based cosmic microwave background experiment CMB-S4, for consideration by the 2020 Decadal Survey.
This is a white paper submitted in response to the call from the Astro2020 Decadal Survey Committee. We outline the scientific progress that will be made in the next few decades in the study of supernova remnants in the X-ray band, using observatories like Athena, Lynx, and AXIS.
Practically all known planet hosts will evolve into white dwarfs, and large parts of their planetary systems will survive this transition - the same is true for the solar system beyond the orbit of Mars. Spectroscopy of white dwarfs accreting planeta ry debris provides the most accurate insight into the bulk composition of exo-planets. Ground-based spectroscopic surveys of ~260, 000 white dwarfs detected with Gaia will identify >1000 evolved planetary systems, and high-throughput high-resolution space-based ultraviolet spectroscopy is essential to measure in detail their abundances. So far, evidence for two planetesimals orbiting closely around white dwarfs has been obtained, and their study provides important constraints on the composition and internal structure of these bodies. Major photometric and spectroscopic efforts will be necessary to assemble a sample of such close-in planetesimals that is sufficiently large to establish their properties as a population, and to deduce the architectures of the outer planetary systems from where they originated. Mid-infrared spectroscopy of the dusty disks will provide detailed mineralogical information of the debris, which, in combination with the elemental abundances measured from the white dwarf spectroscopy, will enable detailed physical modelling of the chemical, thermodynamic, and physical history of the accreted material. Flexible multi-epoch infrared observations are essential to determine the physical nature, and origin of the variability observed in many of the dusty disks. Finally, the direct detection of the outer reservoirs feeding material to the white dwarfs will require sensitive mid- and far-infrared capabilities.
Ultra-compact binaries (UCBs) are systems containing compact or degenerate stars with orbital periods less than one hour. Tens of millions of UCBs are predicted to exist within theGalaxy emitting gravitational waves (GWs) at mHz frequencies. Combinin g GW searches with electromagnetic (EM) surveys like Gaia and LSST will yield a comprehensive, multimessenger catalog of UCBs in the galaxy. Joint EM and GW observations enable measurements of masses, radii, and orbital dynamics far beyond what can be achieved by independent EM or GW studies. GW+EM surveys of UCBs in the galaxy will yield a trove of unique insights into the nature of white dwarfs, the formation of compact objects, dynamical interactions in binaries, and energetic, accretion-driven phenomena like Type Ia superonovae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا