ﻻ يوجد ملخص باللغة العربية
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We therefore propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization and each sub-problem can be efficiently solved. Experiments on two challenging real-world image datasets demonstrate the effectiveness and superiority of the proposed method.
Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and sufferings during post-natural disasters based on social media contents (text and images). While notable progre
For artificial intelligence-based image analysis methods to reach clinical applicability, the development of high-performance algorithms is crucial. For example, existent segmentation algorithms based on natural images are neither efficient in their
Multi-modal magnetic resonance imaging (MRI) is essential in clinics for comprehensive diagnosis and surgical planning. Nevertheless, the segmentation of multi-modal MR images tends to be time-consuming and challenging. Convolutional neural network (
Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation
Classifying the confusing samples in the course of RGBT tracking is a quite challenging problem, which hasnt got satisfied solution. Existing methods only focus on enlarging the boundary between positive and negative samples, however, the structured