ترغب بنشر مسار تعليمي؟ اضغط هنا

TightCap: 3D Human Shape Capture with Clothing Tightness Field

129   0   0.0 ( 0 )
 نشر من قبل Xin Chen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present TightCap, a data-driven scheme to capture both the human shape and dressed garments accurately with only a single 3D human scan, which enables numerous applications such as virtual try-on, biometrics and body evaluation. To break the severe variations of the human poses and garments, we propose to model the clothing tightness - the displacements from the garments to the human shape implicitly in the global UV texturing domain. To this end, we utilize an enhanced statistical human template and an effective multi-stage alignment scheme to map the 3D scan into a hybrid 2D geometry image. Based on this 2D representation, we propose a novel framework to predicted clothing tightness via a novel tightness formulation, as well as an effective optimization scheme to further reconstruct multi-layer human shape and garments under various clothing categories and human postures. We further propose a new clothing tightness dataset (CTD) of human scans with a large variety of clothing styles, poses and corresponding ground-truth human shapes to stimulate further research. Extensive experiments demonstrate the effectiveness of our TightCap to achieve high-quality human shape and dressed garments reconstruction, as well as the further applications for clothing segmentation, retargeting and animation.



قيم البحث

اقرأ أيضاً

We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which we dub physionical, is aware of physical and environmental constraints. It combines in a fully differentiable way several key innovations, i.e., 1. a proportional-derivative controller, with gains predicted by a neural network, that reduces delays even in the presence of fast motions, 2. an explicit rigid body dynamics model and 3. a novel optimisation layer that prevents physically implausible foot-floor penetration as a hard constraint. The inputs to our system are 2D joint keypoints, which are canonicalised in a novel way so as to reduce the dependency on intrinsic camera parameters -- both at train and test time. This enables more accurate global translation estimation without generalisability loss. Our model can be finetuned only with 2D annotations when the 3D annotations are not available. It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes, including newly recorded ones. Its advantages are especially noticeable on in-the-wild sequences that significantly differ from common 3D pose estimation benchmarks such as Human 3.6M and MPI-INF-3DHP. Qualitative results are available at http://gvv.mpi-inf.mpg.de/projects/PhysAware/
We propose a new approach to human clothing modeling based on point clouds. Within this approach, we learn a deep model that can predict point clouds of various outfits, for various human poses and for various human body shapes. Notably, outfits of v arious types and topologies can be handled by the same model. Using the learned model, we can infer geometry of new outfits from as little as a singe image, and perform outfit retargeting to new bodies in new poses. We complement our geometric model with appearance modeling that uses the point cloud geometry as a geometric scaffolding, and employs neural point-based graphics to capture outfit appearance from videos and to re-render the captured outfits. We validate both geometric modeling and appearance modeling aspects of the proposed approach against recently proposed methods, and establish the viability of point-based clothing modeling.
Monocular 3D human pose and shape estimation is challenging due to the many degrees of freedom of the human body and thedifficulty to acquire training data for large-scale supervised learning in complex visual scenes. In this paper we present practic al semi-supervised and self-supervised models that support training and good generalization in real-world images and video. Our formulation is based on kinematic latent normalizing flow representations and dynamics, as well as differentiable, semantic body part alignment loss functions that support self-supervised learning. In extensive experiments using 3D motion capture datasets like CMU, Human3.6M, 3DPW, or AMASS, as well as image repositories like COCO, we show that the proposed methods outperform the state of the art, supporting the practical construction of an accurate family of models based on large-scale training with diverse and incompletely labeled image and video data.
This paper tackles the problem of estimating 3D body shape of clothed humans from single polarized 2D images, i.e. polarization images. Polarization images are known to be able to capture polarized reflected lights that preserve rich geometric cues o f an object, which has motivated its recent applications in reconstructing surface normal of the objects of interest. Inspired by the recent advances in human shape estimation from single color images, in this paper, we attempt at estimating human body shapes by leveraging the geometric cues from single polarization images. A dedicated two-stage deep learning approach, SfP, is proposed: given a polarization image, stage one aims at inferring the fined-detailed body surface normal; stage two gears to reconstruct the 3D body shape of clothing details. Empirical evaluations on a synthetic dataset (SURREAL) as well as a real-world dataset (PHSPD) demonstrate the qualitative and quantitative performance of our approach in estimating human poses and shapes. This indicates polarization camera is a promising alternative to the more conventional color or depth imaging for human shape estimation. Further, normal maps inferred from polarization imaging play a significant role in accurately recovering the body shapes of clothed people.
Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different prob lem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation - skeleton, volumetric shape, appearance, and optionally a body surface - and estimates the actors motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume raycasting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, as well as variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا