ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bayesian Nonparametric Test for Assessing Multivariate Normality

84   0   0.0 ( 0 )
 نشر من قبل Luai Al-Labadi Dr.
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a novel Bayesian nonparametric test for assessing multivariate normal models is presented. While there are extensive frequentist and graphical methods for testing multivariate normality, it is challenging to find Bayesian counterparts. The proposed approach is based on the use of the Dirichlet process and Mahalanobis distance. More precisely, the Mahalanobis distance is employed as a good technique to transform the $m$-variate problem into a univariate problem. Then the Dirichlet process is used as a prior on the distribution of the Mahalanobis distance. The concentration of the distribution of the distance between the posterior process and the chi-square distribution with $m$ degrees of freedom is compared to the concentration of the distribution of the distance between the prior process and the chi-square distribution with $m$ degrees of freedom via a relative belief ratio. The distance between the Dirichlet process and the chi-square distribution is established based on the Anderson-Darling distance. Key theoretical results of the approach are derived. The procedure is illustrated through several examples, in which the proposed approach shows excellent performance.



قيم البحث

اقرأ أيضاً

74 - Sophie Donnet 2018
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First rates are derived for L1-metrics for stochastic intensities of the Hawkes pro cess. We then deduce rates for the L1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. Numerical illustrations are then proposed with in mind applications for inferring functional connec-tivity graphs of neurons.
302 - Jeremie Kellner 2015
We propose a new one-sample test for normality in a Reproducing Kernel Hilbert Space (RKHS). Namely, we test the null-hypothesis of belonging to a given family of Gaussian distributions. Hence our procedure may be applied either to test data for norm ality or to test parameters (mean and covariance) if data are assumed Gaussian. Our test is based on the same principle as the MMD (Maximum Mean Discrepancy) which is usually used for two-sample tests such as homogeneity or independence testing. Our method makes use of a special kind of parametric bootstrap (typical of goodness-of-fit tests) which is computationally more efficient than standard parametric bootstrap. Moreover, an upper bound for the Type-II error highlights the dependence on influential quantities. Experiments illustrate the practical improvement allowed by our test in high-dimensional settings where common normality tests are known to fail. We also consider an application to covariance rank selection through a sequential procedure.
A Bayesian nonparametric estimator to entropy is proposed. The derivation of the new estimator relies on using the Dirichlet process and adapting the well-known frequentist estimators of Vasicek (1976) and Ebrahimi, Pflughoeft and Soofi (1994). Sever al theoretical properties, such as consistency, of the proposed estimator are obtained. The quality of the proposed estimator has been investigated through several examples, in which it exhibits excellent performance.
Bayesian methods are developed for the multivariate nonparametric regression problem where the domain is taken to be a compact Riemannian manifold. In terms of the latter, the underlying geometry of the manifold induces certain symmetries on the mult ivariate nonparametric regression function. The Bayesian approach then allows one to incorporate hierarchical Bayesian methods directly into the spectral structure, thus providing a symmetry-adaptive multivariate Bayesian function estimator. One can also diffuse away some prior information in which the limiting case is a smoothing spline on the manifold. This, together with the result that the smoothing spline solution obtains the minimax rate of convergence in the multivariate nonparametric regression problem, provides good frequentist properties for the Bayes estimators. An application to astronomy is included.
Bayesian nonparametric statistics is an area of considerable research interest. While recently there has been an extensive concentration in developing Bayesian nonparametric procedures for model checking, the use of the Dirichlet process, in its simp lest form, along with the Kullback-Leibler divergence is still an open problem. This is mainly attributed to the discreteness property of the Dirichlet process and that the Kullback-Leibler divergence between any discrete distribution and any continuous distribution is infinity. The approach proposed in this paper, which is based on incorporating the Dirichlet process, the Kullback-Leibler divergence and the relative belief ratio, is considered the first concrete solution to this issue. Applying the approach is simple and does not require obtaining a closed form of the relative belief ratio. A Monte Carlo study and real data examples show that the developed approach exhibits excellent performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا