ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic rays escaping from Galactic starburst-driven superbubbles

104   0   0.0 ( 0 )
 نشر من قبل Zhaowei Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate spectra of escaping cosmic rays (CRs) accelerated at shocks produced by expanding Galactic superbubbles powered by multiple supernovae producing a continuous energy outflow in star-forming galaxies. We solve the generalized Kompaneets equations adapted to expansion in various external density profiles, including exponential and power-law shapes, and take into account that escaping CRs are dominated by those around their maximum energies. We find that the escaping CR spectrum largely depends on the specific density profiles and power source properties, and the results are compared to and constrained by the observed CR spectrum. As a generic demonstration, we apply the scheme to a superbubble occurring in the centre of the Milky Way, and find that under specific parameter sets the CRs produced in our model can explain the observed CR flux and spectrum around the second knee at $10^{17}$ eV.



قيم البحث

اقرأ أيضاً

79 - Ryan Tanner , Gerald Cecil , 2015
Our three-dimensional hydro-dynamical simulations of starbursts examine the formation of superbubbles over a range of driving luminosities and mass loadings that determine superbubble growth and wind velocity. From this we determine the relationship between the velocity of a galactic wind and the power of the starburst. We find a threshold for the formation of a wind, above which the speed of the wind is not affected by grid resolution or the temperature floor of our radiative cooling. We investigate the effect two different temperature floors in our radiative cooling prescription have on wind kinematics and content. We find that cooling to $10$ K instead of to $10^4$ K increases the mass fraction of cold neutral and hot X-ray gas in the galactic wind while halving that in warm H$alpha$. Our simulations show the mass of cold gas transported into the lower halo does not depend on the starburst strength. Optically bright filaments form at the edge of merging superbubbles, or where a cold dense cloud has been disrupted by the wind. Filaments formed by merging superbubbles will persist and grow to $>400$ pc in length if anchored to a star forming complex. Filaments embedded in the hot galactic wind contain warm and cold gas that moves $300-1200$ km s$^{-1}$ slower than the surrounding wind, with the coldest gas hardly moving with respect to the galaxy. Warm and cold matter in the galactic wind show asymmetric absorption profiles consistent with observations, with a thin tail up to the wind velocity.
We study the propagation of cosmic rays generated by sources residing inside superbubbles. We show that the enhanced magnetic field in the bubble wall leads to an increase of the interior cosmic ray density. Because of the large matter density in the wall, the probability for cosmic ray interactions on gas peaks there. As a result, the walls of superbubbles located near young cosmic ray sources emit efficiently neutrinos. We apply this scenario to the Loop~I and Local Superbubble: These bubbles are sufficiently near such that cosmic rays from a young source as Vela interacting in the bubble wall can generate a substantial fraction of the observed astrophysical high-energy neutrino flux below $sim$ few $times 100$ TeV.
We discuss processes in galactic cosmic ray (GCR) acceleration sites - supernova remnants, compact associations of young massive stars, and superbubbles. Mechanisms of efficient conversion of the mechanical power of the outflows driven by supernova s hocks and fast stellar winds of young stars into magnetic fields and relativistic particles are discussed. The high efficiency of particle acceleration in the sources implies the importance of nonlinear feedback effects in a symbiotic relationship where the magnetic turbulence required to accelerate the CRs is created by the accelerated CRs themselves. Non-thermal emission produced by relativistic particles (both those confined in and those that escape from the cosmic accelerators) can be used to constrain the basic physical models of the GCR sources. High resolution X-ray synchrotron imaging, combined with GeV-TeV gamma ray spectra, is a powerful tool to probe the maximum energies of accelerated particles. Future MeV regime spectroscopy will provide unique information on the composition of accelerated particles.
The study of the transition between galactic and extragalactic cosmic rays can shed more light on the end of the Galactic cosmic rays spectrum and the beginning of the extragalactic one. Three models of transition are discussed: ankle, dip and mixed composition models. All these models describe the transition as an intersection of a steep galactic component with a flat extragalactic one. Severe bounds on these models are provided by the Standard Model of Galactic Cosmic Rays according to which the maximum acceleration energy for Iron nuclei is of the order of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. In the ankle model the transition is assumed at the ankle, a flat feature in the all particle spectrum which observationally starts at energy $E_a sim (3 - 4)times 10^{18}$ eV. This model needs a new high energy galactic component with maximum energy about two orders of magnitude above that of the Standard Model. The origin of such component is discussed. As observations are concerned there are two signatures of the transition: change of energy spectra and mass composition. In all models a heavy galactic component is changed at the transition to a lighter or proton component.
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR anisotropy region detected by Pierre Auger Observatory. The nearby starburst galaxy (SBG), NGC 4945, is close to this anisotropic region and inside the mean angular error of the IC35 event. Considering the hypernovae contribution located in the SB region of NGC 4945, which can accelerate protons up to $sim 10^{17} , {rm eV}$ and inject them into the interstellar medium, we investigate the origin of this event around this starburst galaxy. We show that the interaction of these protons with the SB regions gas density could explain Fermi-LAT gamma-ray and radio observations if the magnetic fields strength in the SB region is the order of $sim rm mG$. Our estimated PeV neutrino events, in ten years, for this source is approximately 0.01 ($4times10^{-4}$) if a proton spectral index of 2.4 (2.7) is considered, which would demonstrate that IC35 is not produced in the central region of this SBG. Additionally, we consider the superwind region of NGC 4945 and show that protons can hardly be accelerated in it up to UHEs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا