ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliable estimation of the radius of convergence in finite density QCD

92   0   0.0 ( 0 )
 نشر من قبل Attila P\\'asztor
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study different estimators of the radius of convergence of the Taylor series of the pressure in finite density QCD. We adopt the approach in which the radius of convergence is estimated first in a finite volume, and the infinite-volume limit is taken later. This requires an estimator for the radius of convergence that is reliable in a finite volume. Based on general arguments about the analytic structure of the partition function in a finite volume, we demonstrate that the ratio estimator cannot work in this approach, and propose three new estimators, capable of extracting reliably the radius of convergence, which coincides with the distance from the origin of the closest Lee-Yang zero. We also provide an estimator for the phase of the closest Lee-Yang zero, necessary to assess whether the leading singularity is a true critical point. We demonstrate the usage of these estimators on a toy model, namely 4 flavors of unimproved staggered fermions on a small $6^3 times 4$ lattice, where both the radius of convergence and the Taylor coefficients to any order can be obtained by a direct determination of the Lee-Yang zeros. Interestingly, while the relative statistical error of the Taylor expansion coefficients steadily grows with order, that of our estimators stabilizes, allowing for an accurate estimate of the radius of convergence. In particular, we show that despite the more than 100% error bars on high-order Taylor coefficients, the given ensemble contains enough information about the radius of convergence.



قيم البحث

اقرأ أيضاً

We propose a novel Bayesian method to analytically continue observables to real baryochemical potential $mu_B$ in finite density QCD. Taylor coefficients at $mu_B=0$ and data at imaginary chemical potential $mu_B^I$ are treated on equal footing. We c onsider two different constructions for the Pade approximants, the classical multipoint Pade approximation and a mixed approximation that is a slight generalization of a recent idea in Pade approximation theory. Approximants with spurious poles are excluded from the analysis. As an application, we perform a joint analysis of the available continuum extrapolated lattice data for both pseudocritical temperature $T_c$ at $mu_B^I$ from the Wuppertal-Budapest Collaboration and Taylor coefficients $kappa_2$ and $kappa_4$ from the HotQCD Collaboration. An apparent convergence of $[p/p]$ and $[p/p+1]$ sequences of rational functions is observed with increasing $p.$ We present our extrapolation up to $mu_Bapprox 600$ MeV.
We discuss two new DoS approaches for finite density lattice QCD. The paper extends a recent presentation of the new techniques based on Wilson fermions, while here we now discuss and test the case of finite density QCD with staggered fermions. The f irst of our two approaches is based on the canonical formulation where observables at a fixed net quark number $N$ are obtained as Fourier moments of the vacuum expectation values at imaginary chemical potential $theta$. We treat the latter as densities which can be computed with the recently developed FFA method. The second approach is based on a direct grand canonical evaluation after rewriting the QCD partition sum in terms of a suitable pseudo-fermion representation. In this form the imaginary part of the pseudo-fermion action can be identified and the corresponding density may again be computed with FFA. We develop the details of the two approaches and discuss some exploratory first tests for the case of free fermions where reference results for assessing the new techniques may be obtained from Fourier transformation.
602 - B. Alles 2006
The behaviour of the topological susceptibility chi in QCD with two colours and 8 flavours of quarks is studied at nonzero temperature on the lattice across the finite density transition. It is shown that the signal of chi drops abruptly at a critica l chemical potential mu_c, much as it happens at the finite temperature and zero density transition. The Polyakov loop and the chiral condensate undergo their transitions at the same critical value mu_c. At a value mu_s of the chemical potential, called saturation point, which in our case satisfies mu_s > mu_c, Pauli blocking supervenes and consequently the theory becomes quenched.
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic a nalysis of the spectrum at finite isospin density. In particular, we measured pion, rho and nucleon masses inside and outside of the pion condensation phase. In agreement with previous studies in two-color QCD at finite baryon density we find that the Polyakov loop does not depend on the density in the staggered formulation.
We demonstrate that the complex Langevin method (CLM) enables calculations in QCD at finite density in a parameter regime in which conventional methods, such as the density of states method and the Taylor expansion method, are not applicable due to t he severe sign problem. Here we use the plaquette gauge action with $beta = 5.7$ and four-flavor staggered fermions with degenerate quark mass $m a = 0.01$ and nonzero quark chemical potential $mu$. We confirm that a sufficient condition for correct convergence is satisfied for $mu /T = 5.2 - 7.2$ on a $8^3 times 16$ lattice and $mu /T = 1.6 - 9.6$ on a $16^3 times 32$ lattice. In particular, the expectation value of the quark number is found to have a plateau with respect to $mu$ with the height of 24 for both lattices. This plateau can be understood from the Fermi distribution of quarks, and its height coincides with the degrees of freedom of a single quark with zero momentum, which is 3 (color) $times$ 4 (flavor) $times$ 2 (spin) $=24$. Our results may be viewed as the first step towards the formation of the Fermi sphere, which plays a crucial role in color superconductivity conjectured from effective theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا