ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting Future Murders of Mr. Boddy by Numerical Weather Prediction

150   0   0.0 ( 0 )
 نشر من قبل Eve Armstrong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eve Armstrong




اسأل ChatGPT حول البحث

Despite a previous description of his state as a stable fixed point, just past midnight this morning Mr. Boddy was murdered again. In fact, over 70 years Mr. Boddy has been reported murdered $10^6$ times, while there exist no documented attempts at intervention. Using variational data assimilation, we train a model of Mr. Boddys dynamics on the time series of observed murders, to forecast future murders. The parameters to be estimated include instrument, location, and murderer. We find that a successful estimation requires three additional elements. First, to minimize the effects of selection bias, generous ranges are placed on parameter searches, permitting values such as the Cliff, the Poisoned Apple, and the Wife. Second, motive, which was not considered relevant to previous murders, is added as a parameter. Third, Mr. Boddys little-known asthmatic condition is considered as an alternative cause of death. Following this mornings event, the next local murder is forecast for 17:19:03 EDT this afternoon, with a standard deviation of seven hours, at The Kitchen at 4330 Katonah Avenue, Bronx, NY, 10470, with either the Lead Pipe or the Lead Bust of Washington Irving. The motive is: Case of Mistaken Identity, and there was no convergence upon a murderer. Testing of the procedures predictive power will involve catching the D train to 205th Street and a few transfers over to Katonah Avenue, and sitting around waiting with our eyes peeled. We discuss the problem of identifying a global solution - that is, the best reason for murder on a landscape riddled with pretty-decent reasons. We also discuss the procedures assumption of Gaussian-distributed errors, which will under-predict rare events. This under-representation of highly improbable events may be offset by the fact that the training data, after all, consists of multiple murders of a single person.



قيم البحث

اقرأ أيضاً

183 - Enrico Camporeale 2019
The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.
The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms; forecasts for each active region on the solar disk over the next 24 hours, and full-disk forecasts for the next four days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results, and forecasting skill decreasing over longer forecast lead times.
The statistical behavior of weather variables of Antofagasta is described, especially the daily data of air as temperature, pressure and relative humidity measured at 08:00, 14:00 and 20:00. In this article, we use a time series deseasonalization tec hnique, Q-Q plot, skewness, kurtosis and the Pearson correlation coefficient. We found that the distributions of the records are symmetrical and have positive kurtosis, so they have heavy tails. In addition, the variables are highly autocorrelated, extending up to one year in the case of pressure and temperature.
We assess the value of machine learning as an accelerator for the parameterisation schemes of operational weather forecasting systems, specifically the parameterisation of non-orographic gravity wave drag. Emulators of this scheme can be trained to p roduce stable and accurate results up to seasonal forecasting timescales. Generally, more complex networks produce more accurate emulators. By training on an increased complexity version of the existing parameterisation scheme we build emulators that produce more accurate forecasts. {For medium range forecasting we find evidence our emulators are more accurate} than the version of the parametrisation scheme that is used for operational predictions. Using the current operational CPU hardware our emulators have a similar computational cost to the existing scheme, but are heavily limited by data movement. On GPU hardware our emulators perform ten times faster than the existing scheme on a CPU.
307 - Tim Palmer 2020
In this essay, I outline a personal vision of how I think Numerical Weather Prediction (NWP) should evolve in the years leading up to 2030 and hence what it should look like in 2030. By NWP I mean initial-value predictions from timescales of hours to seasons ahead. Here I want to focus on how NWP can better help save lives from increasingly extreme weather in those parts of the world where society is most vulnerable. Whilst we can rightly be proud of many parts of our NWP heritage, its evolution has been influenced by national or institutional politics as well as by underpinning scientific principles. Sometimes these conflict with each other. It is important to be able to separate these issues when discussing how best meteorological science can serve society in 2030; otherwise any disruptive change - no matter how compelling the scientific case for it - becomes impossibly difficult.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا