ﻻ يوجد ملخص باللغة العربية
Turbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result into a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases. We review, from both experimental and theoretical points of view, advances in quantum turbulence focusing on atomic Bose-Einstein condensates. We also explore the similarities and differences between quantum and classical turbulence. Lastly, we present challenges and possible directions for the field. We summarize questions that are being asked in recent works, which need to be answered in order to understand fundamental properties of quantum turbulence, and we provide some possible ways of investigating them.
Advances in light shaping for optical trapping of neutral particles have led to the development of box traps for ultracold atoms and molecules. These traps have allowed the creation of homogeneous quantum gases and opened new possibilities for studie
We study the elementary characteristics of turbulence in a quantum ferrofluid through the context of a dipolar Bose gas condensing from a highly non-equilibrium thermal state. Our simulations reveal that the dipolar interactions drive the emergence o
Ultracold atomic gases have developed into prime systems for experimental studies of Efimov three-body physics and related few-body phenomena, which occur in the universal regime of resonant interactions. In the last few years, many important breakth
Over the last years the exciting developments in the field of ultracold atoms confined in optical lattices have led to numerous theoretical proposals devoted to the quantum simulation of problems e.g. known from condensed matter physics. Many of thos
The method of functional renormalization is applied to the theoretical investigation of ultracold quantum gases. Flow equations are derived for a Bose gas with approximately pointlike interaction, for a Fermi gas with two (hyperfine) spin components