ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism in the Brown Dwarf Regime

157   0   0.0 ( 0 )
 نشر من قبل Melodie Kao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A suite of discoveries in the last two decades demonstrate that we are now at a point where incorporating magnetic behavior is key for advancing our ability to characterize substellar and planetary systems. The next decade heralds the exciting maturation of the now-burgeoning field of brown dwarf magnetism, and investing now in brown dwarf magnetism will provide a key platform for exploring exoplanetary magnetism and habitability beyond the solar system. We anticipate significant discoveries including: the nature of substellar and planetary magnetic dynamos, the characterization of exo-aurora physics and brown dwarf magnetospheric environments, and the role of satellites in manifestations of substellar magnetic activity. These efforts will require significant new observational capabilities at radio and near infrared wavelengths, dedicated long-term monitoring programs, and committed support for the theoretical modeling efforts underpinning the physical processes of the magnetic phenomena



قيم البحث

اقرأ أيضاً

121 - E.T. Whelan , T.P. Ray , L.Podio 2009
Over the last number of years spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persists to the lowest masses. In this paper we present the results of our latest investigation of brown dwarf (BD) outflow activity and report on the discovery of two new outflows. Here ISO-Oph 32 is shown to drive a blue-shifted outflow with a radial velocity of 10-20 km/s and spectro-astrometric analysis constrains the position angle of this outflow to 240 +/- 7 degrees. The BD candidate ISO-Cha1 217 is found to have a bipolar outflow bright in several key forbidden lines (radial velocity = -20 km/s, +40 km/s) and with a PA of 190-210 degrees. A striking feature of the ISO-Cha1 217 outflow is the strong asymmetry between the red and blue-shifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (red-shifted lobe is brighter), the factor of two difference in radial velocity (the red-shifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low mass protostars and the observation of a marked asymmetry at such a low mass supports the idea that BD outflow activity is scaled down from low mass protostellar activity. In addition to presenting these new results, a comprehensive comparison is made between BD outflow activity and jets launched by CTTSs. In particular, the application of current methods for investigating the excitation conditions and mass loss rates in CTT jets to BD spectra is explored.
We have observed the eclipsing, post-common envelope white dwarf-brown dwarf binary, SDSS141126.20+200911.1, in the near-IR with the HAWK-I imager, and present here the first direct detection of the dark side of an irradiated brown dwarf in the $H$ b and, and a tentative detection in the $K_s$ band. Our analysis of the lightcurves and indicates that the brown dwarf is likely to have an effective temperature of 1300 K, which is not consistent with the effective temperature of 800 K suggested by its mass and radius. As the brown dwarf is already absorbing almost all the white dwarf emission in the $K_s$ band we suggest that this inconsistency may be due to the UV-irradiation from the white dwarf inducing an artificial brightening in the $K_s$ band, similar to that seen for the similar system WD0137-349B, suggesting this brightening may be characteristic of these UV-irradiated binaries.
We have performed deep, wide-field imaging on a ~0.4 deg^2 field in the Pleiades (Melotte 22). The selected field was not yet target of a deep search for low mass stars and brown dwarfs. Our limiting magnitudes are R ~ 22mag and I ~ 20mag, sufficient to detect brown dwarf candidates down to 40MJ. We found 197 objects, whose location in the (I, R - I) color magnitude diagram is consistent with the age and the distance of the Pleiades. Using CTK R and I as well as JHK photometry from our data and the 2MASS survey we were able to identify 7 new brown dwarf candidates. We present our data reduction technique, which enables us to resample, calibrate, and co-add many images by just two steps. We estimate the interstellar extinction and the spectral type from our optical and the NIR data using a two-dimensional chi^22 fitting.
We present new XSHOOTER spectra of NLTT5306, a 0.44 $pm$ 0.04msun white dwarf in a short period (101,min) binary system with a brown dwarf companion that is likely to have previously undergone common envelope evolution. We have confirmed the presence of H$alpha$ emission and discovered Na I absorption associated with the white dwarf. These observations are indicative of accretion. Accretion is typically evidenced by high energy emission in the UV and X-ray regime. However our textit{Swift} observations covering the full orbital period in three wavebands (uvw1, uvm2, uvw2) revealed no UV excess or modulation. We used the X-ray non-detection to put an upper limit on the accretion rate of 2$times$10$^{-15}$msun yr$^{-1}$. We compare NLTT5306 to similar accreting binaries with brown dwarf donors and suggest the inferred accretion rate could be from wind accretion or accretion from a debris/dust disk. The lack of evidence for a disk implies NLTT5306 is magnetically funnelling a weak wind from a potentially low gravity brown dwarf. The upper limit on the accretion rate suggests a magnetic field as low as 0.45,kG would be sufficient to achieve this. If confirmed this would constitute the first detection of a brown dwarf wind and could provide useful constraints on mass loss rates.
From the luminosity, effective temperature, and age of the Hyades brown dwarf 2MASSJ04183483+2131275 (2M0418), sub-stellar evolutionary models predict a mass in the range 39-55 Jupiter masses (M_Jup) which is insufficient to produce any substantial l ithium burning except for the very upper range >53 M_Jup. Our goal is to measure the abundance of lithium in this object, test the consistency between models and observations and refine constraints on the mass and age of the object. We used the 10.4-m Gran Telescopio Canarias (GTC) with its low-dispersion optical spectrograph to obtain ten spectra of 2277s each covering the range 6300-10300 Angstroms with a resolving power of R~500. In the individual spectra, which span several months, we detect persistent unresolved H_alpha in emission with pseudo equivalent widths (pEW) in the range 45-150 Angstroms and absorption lines of various alkalis with the typical strengths found in objects of L5 spectral type. The lithium resonance line at 6707.8 Angstroms is detected with pEW of 18+/-4 Angstroms in 2M0418 (L5). We determine a lithium abundance of log N(Li) = 3.0+/-0.4 dex consistent with a minimum preservation of 90% of this element which confirms 2M0418 as a brown dwarf with a maximum mass of 52 M_Jup. We infer a maximum age for the Hyades of 775 Myr from a comparison with the BHAC15 models. Combining recent results from the literature with our study, we constrain the mass of 2M0418 to 45-52 M_Jup and the age of the cluster to 580-775 Myr (1 sigma) based on the lithium depletion boundary method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا