ﻻ يوجد ملخص باللغة العربية
We study three orientation-based shape descriptors on a set of continuously moving points: the first principal component, the smallest oriented bounding box and the thinnest strip. Each of these shape descriptors essentially defines a cost capturing the quality of the descriptor and uses the orientation that minimizes the cost. This optimal orientation may be very unstable as the points are moving, which is undesirable in many practical scenarios. If we bound the speed with which the orientation of the descriptor may change, this may lower the quality of the resulting shape descriptor. In this paper we study the trade-off between stability and quality of these shape descriptors. We first show that there is no stateless algorithm, an algorithm that keeps no state over time, that both approximates the minimum cost of a shape descriptor and achieves continuous motion for the shape descriptor. On the other hand, if we can use the previous state of the shape descriptor to compute the new state, we can define chasing algorithms that attempt to follow the optimal orientation with bounded speed. We show that, under mild conditions, chasing algorithms with sufficient bounded speed approximate the optimal cost at all times for oriented bounding boxes and strips. The analysis of such chasing algorithms is challenging and has received little attention in literature, hence we believe that our methods used in this analysis are of independent interest.
We study the $k$-center problem in a kinetic setting: given a set of continuously moving points $P$ in the plane, determine a set of $k$ (moving) disks that cover $P$ at every time step, such that the disks are as small as possible at any point in ti
In this paper, we present a systematic stability analysis of the quadrature-based moment method (QBMM) for the one-dimensional Boltzmann equation with BGK or Shakhov models. As reported in recent literature, the method has revealed its potential for
One of the main discoveries from the first two orbits of Parker Solar Probe (PSP) was the presence of magnetic switchbacks, whose deflections dominated the magnetic field measurements. Determining their shape and size could provide evidence of their
The aim of the article is to study the stability of a non-local kinetic model proposed by Loy and Preziosi (2019a). We split the population in two subgroups and perform a linear stability analysis. We show that pattern formation results from modulati
This paper studies empty squares in arbitrary orientation among a set $P$ of $n$ points in the plane. We prove that the number of empty squares with four contact pairs is between $Omega(n)$ and $O(n^2)$, and that these bounds are tight, provided $P$