ترغب بنشر مسار تعليمي؟ اضغط هنا

The diverse evolutionary pathways of post-starburst galaxies

182   0   0.0 ( 0 )
 نشر من قبل Vivienne Wild
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. M. Pawlik




اسأل ChatGPT حول البحث

About 35 years ago a class of galaxies with unusually strong Balmer absorption lines and weak emission lines was discovered in distant galaxy clusters. These objects, alternatively referred to as post-starburst, E+A or k+a galaxies, are now known to occur in all environments and at all redshifts, with many exhibiting compact morphologies and low-surface brightness features indicative of past galaxy mergers. They are commonly thought to represent galaxies that are transitioning from blue to red sequence, making them critical to our understanding of the origins of galaxy bimodality. However, recent observational studies have questioned this simple interpretation. From observations alone, it is challenging to disentangle the different mechanisms that lead to the quenching of star formation in galaxies. Here we present examples of three different evolutionary pathways that lead to galaxies with strong Balmer absorption lines in the EAGLE simulation: classical blue-to-red quenching, blue-to-blue cycle and red-to-red rejuvenation. The first two are found in both post-starburst galaxies and galaxies with truncated star formation. Each pathway is consistent with scenarios hypothesised for observational samples. The fact that post-starburst signatures can be attained via various evolutionary channels explains the diversity of observed properties, and lends support to the idea that slower quenching channels are important at low redshift.



قيم البحث

اقرأ أيضاً

Quenched post-starburst galaxies (QPSBs) are a rare but important class of galaxies that show signs of rapid cessation or recent rejuvenation of star formation. A recent observation shows that about half of QPSBs have large amounts of cold gas. This molecular CO sample is, however, too small and is not without limitations. Our work aims to verify previous results by applying a new method to study a uniformly selected sample, more than 10 times larger. In particular, we present detailed analysis of H$alpha$/H$beta$ ratios of face-on QPSBs at $z = 0.02 - 0.15$ and with $M_star = 10^{10}-10^{11},M_odot$. We interpret the H$alpha$/H$beta$ ratios by applying our recent gas mass calibration, which is based on non-PSB galaxies but predicts gas masses that are consistent with CO observations of $sim 100$ PSBs. We estimate the molecular gas by either using PSBs with well-measured H$alpha$/H$beta$ ratios or by measuring them from stacked spectra. Our analysis reveals that QPSBs have a wide range of H$alpha$/H$beta$ ratios and molecular gas fractions that overlap with the typical gas fractions of star-forming or quiescent galaxies: H$alpha$/H$beta approx 3-8$ and $f_mathrm{H_2} approx 1%-20%$ with median $f_mathrm{H_2} approx 4%-6%$, which correspond to $M_mathrm{H_2} approx (1-3) times 10^{9} ,M_odot$. Our results indicate that large reservoirs of cold gas are still present in significant numbers of QPSBs, and that they arguably were not removed or destroyed by feedback from active galactic nuclei.
To break the degeneracy among galactic stellar components, we extract kinematic structures using the framework described in Du et al. (2019, 2020). For example, the concept of stellar halos is generalized to weakly-rotating structures that are compos ed of loosely bound stars, which can hence be associated to both disk and elliptical type morphologies. By applying this method to central galaxies with stellar mass $10^{10-11.5} M_odot$ from the TNG50 simulation, we identify three broadly-defined types of galaxies: ones dominated by disk, by bulge, or by stellar halo structures. We then use the simulation to infer the underlying connection between the growth of structures and physical processes over cosmic time. Tracing galaxies back in time, we recognize three fundamental regimes: an early phase of evolution ($zgtrsim2$), and internal and external (mainly mergers) processes that act at later times. We find that disk- and bulge-dominated galaxies are not significantly affected by mergers since $zsim2$; the difference in their present-day structures originates from two distinct evolutionary pathways, extended vs. compact, that are likely determined by their parent dark matter halos; i.e., nature. On the other hand, slow rotator elliptical galaxies are typically halo-dominated, forming by external processes (e.g. mergers) in the later phase, i.e., nurture. This picture challenges the general idea that elliptical galaxies are the same objects as classical bulges. In observations, both bulge- and halo-dominated galaxies are likely to be classified as early-type galaxies with compact morphology and quiescent star formation. However, here we find them to have very different evolutionary histories.
Post-starburst galaxies can be identified via the presence of prominent Hydrogen Balmer absorption lines in their spectra. We present a comprehensive study of the origin of strong Balmer lines in a volume-limited sample of 189 galaxies with $0.01<z<0 .05$, $log(mbox{M}_{star}/mbox{M}_{odot})>9.5$ and projected axis ratio $b/a>0.32$. We explore their structural properties, environments, emission lines and star formation histories, and compare them to control samples of star-forming and quiescent galaxies, and simulated galaxy mergers. Excluding contaminants, in which the strong Balmer lines are most likely caused by dust-star geometry, we find evidence for three different pathways through the post-starburst phase, with most events occurring in intermediate-density environments: (1) a significant disruptive event, such as a gas-rich major merger, causing a starburst and growth of a spheroidal component, followed by quenching of the star formation (70% of post-starburst galaxies at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$ and 60% at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$); (2) at $9.5<log(mbox{M}_{star}/mbox{M}_{odot})<10.5$, stochastic star formation in blue-sequence galaxies, causing a weak burst and subsequent return to the blue sequence (30%); (3) at $log(mbox{M}_{star}/mbox{M}_{odot})>10.5$, cyclic evolution of quiescent galaxies which gradually move towards the high-mass end of the red sequence through weak starbursts, possibly as a result of a merger with a smaller gas-rich companion (40%). Our analysis suggests that AGN are `on for $50%$ of the duration of the post-starburst phase, meaning that traditional samples of post-starburst galaxies with strict emission line cuts will be at least $50%$ incomplete due to the exclusion of narrow-line AGN.
We derive dust masses ($M_{rm dust}$) from the spectral energy distributions of 58 post-starburst galaxies (PSBs). There is an anticorrelation between specific dust mass ($M_{rm dust}$/$M_{star}$) and the time elapsed since the starburst ended, indic ating that dust was either destroyed, expelled, or rendered undetectable over the $sim$1 Gyr after the burst. The $M_{rm dust}$/$M_{star}$ depletion timescale, 205$^{+58}_{-37}$ Myr, is consistent with that of the CO-traced $M_{rm H_2}/M_{star}$, suggesting that dust and gas are altered via the same process. Extrapolating these trends leads to the $M_{rm dust}/M_{star}$ and $M_{rm H_2}/M_{star}$ values of early-type galaxies (ETGs) within 1-2 Gyr, a timescale consistent with the evolution of other PSB properties into ETGs. Comparing $M_{rm dust}$ and $M_{rm H_2}$ for PSBs yields a calibration, log $M_{rm H_2}$ = 0.45 log $M_{rm dust}$ + 6.02, that allows us to place 33 PSBs on the Kennicutt-Schmidt (KS) plane, $Sigma rm SFR-Sigma M_{rm H_2}$. Over the first $sim$200-300 Myr, the PSBs evolve down and off of the KS relation, as their star formation rate (SFR) decreases more rapidly than $M_{rm H_2}$. Afterwards, $M_{rm H_2}$ continues to decline whereas the SFR levels off. These trends suggest that the star-formation efficiency bottoms out at 10$^{-11} rm yr^{-1}$ and will rise to ETG levels within 0.5-1.1 Gyr afterwards. The SFR decline after the burst is likely due to the absence of gas denser than the CO-traced H$_2$. The mechanism of the $M_{rm dust}/M_{star}$ and$M_{rm H_2}/M_{star}$ decline, whose timescale suggests active galactic nucleus (AGN) or low-ionization nuclear emission-line region (LINER) feedback, may also be preventing the large CO-traced molecular gas reservoirs from collapsing and forming denser star forming clouds.
Post-starburst or E+A galaxies are rapidly transitioning from star-forming to quiescence. While the current star formation rate of post-starbursts is already at the level of early type galaxies, we recently discovered that many have large CO-traced m olecular gas reservoirs consistent with normal star forming galaxies. These observations raise the question of why these galaxies have such low star formation rates. Here we present an ALMA search for the denser gas traced by HCN (1--0) and HCO+ (1--0) in two CO-luminous, quiescent post-starburst galaxies. Intriguingly, we fail to detect either molecule. The upper limits are consistent with the low star formation rates and with early-type galaxies. The HCN/CO luminosity ratio upper limits are low compared to star-forming and even many early type galaxies. This implied low dense gas mass fraction explains the low star formation rates relative to the CO-traced molecular gas and suggests the state of the gas in post-starburst galaxies is unusual, with some mechanism inhibiting its collapse to denser states. We conclude that post-starbursts galaxies are now quiescent because little dense gas is available, in contrast to the significant CO-traced lower density gas reservoirs that still remain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا