ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation

168   0   0.0 ( 0 )
 نشر من قبل Marco Ancona
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of explaining the behavior of deep neural networks has recently gained a lot of attention. While several attribution methods have been proposed, most come without strong theoretical foundations, which raises questions about their reliability. On the other hand, the literature on cooperative game theory suggests Shapley values as a unique way of assigning relevance scores such that certain desirable properties are satisfied. Unfortunately, the exact evaluation of Shapley values is prohibitively expensive, exponential in the number of input features. In this work, by leveraging recent results on uncertainty propagation, we propose a novel, polynomial-time approximation of Shapley values in deep neural networks. We show that our method produces significantly better approximations of Shapley values than existing state-of-the-art attribution methods.



قيم البحث

اقرأ أيضاً

125 - Ramin Okhrati , Aldo Lipani 2020
Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and machine learning. However, the time complexity to compute Shapley values based on the original formula is exponential, and as the number of features increases, this becomes infeasible. Castro et al. [1] developed a sampling algorithm, to estimate Shapley values. In this work, we propose a new sampling method based on a multilinear extension technique as applied in game theory. The aim is to provide a more efficient (sampling) method for estimating Shapley values. Our method is applicable to any machine learning model, in particular for either multi-class classifications or regression problems. We apply the method to estimate Shapley values for multilayer perceptrons (MLPs) and through experimentation on two datasets, we demonstrate that our method provides more accurate estimations of the Shapley values by reducing the variance of the sampling statistics.
The problem of explaining deep learning models, and model predictions generally, has attracted intensive interest recently. Many successful approaches forgo global approximations in order to provide more faithful local interpretations of the models b ehavior. LIME develops multiple interpretable models, each approximating a large neural network on a small region of the data manifold and SP-LIME aggregates the local models to form a global interpretation. Extending this line of research, we propose a simple yet effective method, NormLIME for aggregating local models into global and class-specific interpretations. A human user study strongly favored class-specific interpretations created by NormLIME to other feature importance metrics. Numerical experiments confirm that NormLIME is effective at recognizing important features.
Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year from Nashville, TN to train a multi-layered deep neural network. The traffic dataset contains over 900 million data records. The network is thereafter used to classify the real-time data and identify anomalous operations. Compared with traditional approaches of using statistical or machine learning techniques, our model reaches an accuracy of 98.73 percent when identifying traffic congestion caused by football games. Our approach first encodes the traffic across a region as a scaled image. After that the image data from different timestamps is fused with event- and time-related data. Then a crossover operator is used as a data augmentation method to generate training datasets with more balanced classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We present the analysis of the training time and the inference time separately.
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of thei r building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $Pi$-Nets, a new class of function approximators based on polynomial expansions. $Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that $Pi$-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $Pi$-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning. The source code is available at url{https://github.com/grigorisg9gr/polynomial_nets}.
Local explanation methods, also known as attribution methods, attribute a deep networks prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DN Ns with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights. Further investigation reveals that their findings are due to two choices in their analysis: (a) ignoring the signs of the attributions; and (b) for integrated gradients (IG), including pixels in their analysis that have zero attributions by choice of the baseline (an auxiliary input relative to which the attributions are computed). When both factors are accounted for, IG attributions for a random network and the actual network are uncorrelated. Our investigation also sheds light on how these issues affect visualizations, although we note that more work is needed to understand how viewers interpret the difference between the random and the actual attributions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا