ﻻ يوجد ملخص باللغة العربية
The problem of explaining the behavior of deep neural networks has recently gained a lot of attention. While several attribution methods have been proposed, most come without strong theoretical foundations, which raises questions about their reliability. On the other hand, the literature on cooperative game theory suggests Shapley values as a unique way of assigning relevance scores such that certain desirable properties are satisfied. Unfortunately, the exact evaluation of Shapley values is prohibitively expensive, exponential in the number of input features. In this work, by leveraging recent results on uncertainty propagation, we propose a novel, polynomial-time approximation of Shapley values in deep neural networks. We show that our method produces significantly better approximations of Shapley values than existing state-of-the-art attribution methods.
Shapley values are great analytical tools in game theory to measure the importance of a player in a game. Due to their axiomatic and desirable properties such as efficiency, they have become popular for feature importance analysis in data science and
The problem of explaining deep learning models, and model predictions generally, has attracted intensive interest recently. Many successful approaches forgo global approximations in order to provide more faithful local interpretations of the models b
Non-recurring traffic congestion is caused by temporary disruptions, such as accidents, sports games, adverse weather, etc. We use data related to real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over a year
Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of thei
Local explanation methods, also known as attribution methods, attribute a deep networks prediction to its input (cf. Baehrens et al. (2010)). We respond to the claim from Adebayo et al. (2018) that local explanation methods lack sensitivity, i.e., DN