ﻻ يوجد ملخص باللغة العربية
Skewness plays a relevant role in several multivariate statistical techniques. Sometimes it is used to recover data features, as in cluster analysis. In other circumstances, skewness impairs the performances of statistical methods, as in the Hotellings one-sample test. In both cases, there is the need to check the symmetry of the underlying distribution, either by visual inspection or by formal testing. The R packages MaxSkew and MultiSkew address these issues by measuring, testing and removing skewness from multivariate data. Skewness is assessed by the third multivariate cumulant and its functions. The hypothesis of symmetry is tested either nonparametrically, with the bootstrap, or parametrically, under the normality assumption. Skewness is removed or at least alleviated by projecting the data onto appropriate linear subspaces. Usages of MaxSkew and MultiSkew are illustrated with the Iris dataset.
The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful in practice as a preprocessing step to find clusters or as an outlier detection tool for multivariate numerical da
The R package MfUSampler provides Monte Carlo Markov Chain machinery for generating samples from multivariate probability distributions using univariate sampling algorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function pe
In this paper, a new mixture family of multivariate normal distributions, formed by mixing multivariate normal distribution and skewed distribution, is constructed. Some properties of this family, such as characteristic function, moment generating fu
Modelling multivariate systems is important for many applications in engineering and operational research. The multivariate distributions under scrutiny usually have no analytic or closed form. Therefore their modelling employs a numerical technique,
FRK is an R software package for spatial/spatio-temporal modelling and prediction with large datasets. It facilitates optimal spatial prediction (kriging) on the most commonly used manifolds (in Euclidean space and on the surface of the sphere), for