Using the Fourier analysis techniques on hyperbolic spaces and Greens function estimates, we confirm in this paper the conjecture given by the same authors in [43]. Namely, we prove that the sharp constant in the $frac{n-1}{2}$-th order Hardy-Sobolev-Mazya inequality in the upper half space of dimension $n$ coincides with the best $frac{n-1}{2}$-th order Sobolev constant when $n$ is odd and $ngeq9$ (See Theorem 1.6). We will also establish a lower bound of the coefficient of the Hardy term for the $k-$th order Hardy-Sobolev-Mazya inequality in upper half space in the remaining cases of dimension $n$ and $k$-th order derivatives (see Theorem 1.7). Precise expressions and optimal bounds for Greens functions of the operator $ -Delta_{mathbb{H}}-frac{(n-1)^{2}}{4}$ on the hyperbolic space $mathbb{B}^n$ and operators of the product form are given, where $frac{(n-1)^{2}}{4}$ is the spectral gap for the Laplacian $-Delta_{mathbb{H}}$ on $mathbb{B}^n$. Finally, we give the precise expression and optimal pointwise bound of Greens function of the Paneitz and GJMS operators on hyperbolic space, which are of their independent interest (see Theorem 1.10).