ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-$N_c$ and Large-$N_F$ Limits of SU($N_c$) Gauge Theories with Fermions in Different Representations

140   0   0.0 ( 0 )
 نشر من قبل Robert Shrock
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present calculations of certain limits of scheme-independent series expansions for the anomalous dimensions of gauge-invariant fermion bilinear operators and for the derivative of the beta function at an infrared fixed point in SU($N_c$) gauge theories with fermions transforming according to two different representations. We first study a theory with $N_f$ fermions in the fundamental representation and $N_{f}$ fermions in the adjoint or symmetric or antisymmetric rank-2 tensor representation, in the limit $N_c to infty$, $N_f to infty$ with $N_f/N_c$ fixed and finite. We then study the $N_c to infty$ limit of a theory with fermions in the adjoint and rank-2 symmetric or antisymmetric tensor representations.



قيم البحث

اقرأ أيضاً

We present a calculation of the $eta$-$eta$ mixing in the framework of large-$N_c$ chiral perturbation theory. A general expression for the $eta$-$eta$ mixing at next-to-next-to-leading order (NNLO) is derived, including higher-derivative terms up to fourth order in the four momentum, kinetic and mass terms. In addition, the axial-vector decay constants of the $eta$-$eta$ system are determined at NNLO. The numerical analysis of the results is performed successively at LO, NLO, and NNLO. We investigate the influence of one-loop corrections, OZI-rule-violating parameters, and $mathcal{O}(N_c p^6)$ contact terms.
We demonstrate that $SO(N_{c})$ gauge theories with matter fields in the vector representation confine due to monopole condensation and break the $SU(N_{F})$ chiral symmetry to $SO(N_{F})$ via the quark bilinear. Our results are obtained by perturbin g the ${cal N}=1$ supersymmetric theory with anomaly-mediated supersymmetry breaking.
We consider two-dimensional lattice SU($N_c$) gauge theories with $N_f$ real scalar fields transforming in the adjoint representation of the gauge group and with a global O($N_f$) invariance. Focusing on systems with $N_fge 3$, we study their zero-te mperature limit, to understand under which conditions a continuum limit exists, and to investigate the nature of the associated quantum field theory. Extending previous analyses, we address the role that the gauge-group representation and the quartic scalar potential play in determining the nature of the continuum limit (when it exists). Our results further corroborate the conjecture that the continuum limit of two-dimensional lattice gauge models with multiflavor scalar fields, when it exists, is associated with a $sigma$ model defined on a symmetric space that has the same global symmetry as the lattice model.
We explore aspects of the phase structure of SU(2) and SU(3) lattice gauge theories at strong coupling with many flavours $N_f$ of Wilson fermions in the fundamental representation. The pseudoscalar meson mass as a function of hopping parameter is ob served to deviate from the expected analytic dependence, at least for sufficiently large $N_f$. Implications of this effect are discussed, including the relevance to recent searches for an infrared fixed point.
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete rmine the nature of the transition lines. In particular, we study the role played by the quartic scalar potential and by the gauge-group representation in determining the Higgs phases and the global and gauge symmetry-breaking patterns characterizing the different transitions. The general arguments are confirmed by numerical analyses of Monte Carlo results for two representative models that are expected to have qualitatively different phase diagrams and Higgs phases. We consider the model with $N_c = 3$, $N_f=2$ and with $N_c=2$, $N_f= 4$. This second case is interesting phenomenologically to describe some features of cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا