ﻻ يوجد ملخص باللغة العربية
Rayleigh-Brillouin scattering spectra of CO$_2$ were measured at pressures ranging from 0.5 to 4~bar, and temperatures from 257 to 355~K using green laser light (wavelength 532~nm, scattering angle of 55.7$^circ$). These spectra were compared to two lineshape models, which take the bulk viscosity as a parameter. One model applies to the kinetic regime, i.e. low pressures, while the second model uses the continuum, hydrodynamic approach and takes the rotational relaxation time as a parameter, which translates into the bulk viscosity. We do not find a significant dependence of the bulk viscosity with pressure or temperature. At pressures where both models apply we find a consistent value of the ratio of bulk viscosity over shear viscosity $eta_b/eta_s = 0.41 pm 0.10$. This value is four orders of magnitude smaller than the common value that is based on the damping of ultrasound, and signifies that in light scattering only relaxation of rotational modes matters, while vibrational modes remain frozen.
Spontaneous Rayleigh-Brillouin scattering (RBS) experiments have been performed in air for pressures in the range 0.25 - 3 bar and temperatures in the range 273 - 333 K. The functional behaviour of the RB-spectral profile as a function of experimenta
High signal-to-noise and high-resolution light scattering spectra are measured for nitrous oxide (N$_2$O) gas at an incident wavelength of 403.00 nm, at 90$^circ$ scattering, at room temperature and at gas pressures in the range $0.5-4$ bar. The resu
We investigate CO$_2$-driven diffusiophoresis of colloidal particles and bacterial cells in a Hele-Shaw geometry. Combining experiments and a model, we understand the characteristic length and time scales of CO$_2$-driven diffusiophoresis in relation
(abridged) Context: Turbulent diffusion of large-scale flows and magnetic fields play major roles in many astrophysical systems. Aims: Our goal is to compute turbulent viscosity and magnetic diffusivity, relevant for diffusing large-scale flows and m
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instab