ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster induced quenching of galaxies in the massive cluster XMMXCSJ2215.9-1738 at z~1.5 traced by enhanced metallicities inside half R200

164   0   0.0 ( 0 )
 نشر من قبل Christian Maier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Maier




اسأل ChatGPT حول البحث

(Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to about one virial radius. Using published spectroscopic redshifts of 108 galaxies in and around the cluster we computed the location of galaxies in the projected velocity vs. position phase-space to separate our cluster sample into a virialized region of objects accreted longer ago (roughly inside half R200) and a region of infalling galaxies. We measured oxygen abundances for ten cluster galaxies with detected [NII] lines in the individual galaxy spectra and compared the MZR of the galaxies inside half R200 with the infalling galaxies and a field sample at similar redshifts. We find that the oxygen abundances of individual z~1.5 star-forming cluster galaxies inside half R200 are comparable, at the respective stellar mass, to the higher local SDSS metallicity values. We find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex and that the resultant metallicities of the galaxies in the inner part of the cluster are higher by about 0.1 dex, at a given mass, than the metallicities of infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities of cluster galaxies at z~1.5 inside half R200 indicate that the density of the ICM in this massive cluster becomes high enough toward the cluster center such that the ram pressure exceeds the restoring pressure of the hot gas reservoir of cluster galaxies. This can remove the gas reservoir initiating quenching; although the galaxies continue to form stars, albeit at slightly lower rates, using the available cold gas in the disk which is not stripped.



قيم البحث

اقرأ أيضاً

83 - C. Maier 2018
(Abridged) We explore 7 clusters from LoCuSS at z~0.2 with spectra of 1965 cluster members from the ACReS Hectospec survey covering a region which corresponds to about three virial radii for each cluster. We measure fluxes of five emission lines of c luster members enabling us to unambiguously derive O/H gas metallicities, and also SFRs from extinction corrected Halpha fluxes. We compare our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin, but their O/H values are displaced to higher values at projected radii of R<R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R~R200 by stopping the inflow of gas. The metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time, because these galaxies consume available disk gas. We use the fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1-2Gyrs. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star-forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1-2Gyrs, meanwhile the galaxies travel to denser inner regions of the cluster, and is followed by a rapid phase: a rapid complete quenching of star formation due to the increasing ram-pressure towards the cluster center which can also strip the cold gas in massive galaxies.
We present the stellar mass functions (SMFs) of passive and star-forming galaxies with a limiting mass of 10$^{10.1}$ M$_{odot}$ in four spectroscopically confirmed Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) galaxy clusters at 1.3 7 $<$ z $<$ 1.63. The clusters have 113 spectroscopically confirmed members combined, with 8-45 confirmed members each. We construct $Ks$-band-selected photometric catalogs for each cluster with an average of 11 photometric bands ranging from $u$ to 8 $mu$m. We compare our cluster galaxies to a field sample derived from a similar $Ks$-band-selected catalog in the UltraVISTA/COSMOS field. The SMFs resemble those of the field, but with signs of environmental quenching. We find that 30 $pm$ 20% of galaxies that would normally be forming stars in the field are quenched in the clusters. The environmental quenching efficiency shows little dependence on projected cluster-centric distance out to $sim$ 4 Mpc, providing tentative evidence of pre-processing and/or galactic conformity in this redshift range. We also compile the available data on environmental quenching efficiencies from the literature, and find that the quenching efficiency in clusters and in groups appears to decline with increasing redshift in a manner consistent with previous results and expectations based on halo mass growth.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allo ws us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
We study the star formation quenching mechanism in cluster galaxies by fitting the SED of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SED are fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies is parametrised using a specific SFH with 2 free parameters, the quenching age QA and the quenching factor QF. These 2 parameters are crucial for the identification of the quenching mechanism which acts on long timescales if starvation while rapid and efficient if ram pressure. To be sensitive to an abrupt and recent variation of the star formation activity, we combine in a new way 20 UV to FIR photometric bands with 3 age-sensitive Balmer line absorption indices extracted from available medium-resolution integrated spectroscopy and with Halpha narrow band imaging data. The use of a truncated SFH significantly increases the quality of the fit in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical QA of the perturbed late-type galaxies is QA < 300 Myr whenever the activity of star formation is reduced by 50% < QF <= 80% and QA < 500 Myr for QF > 80%, while that of the quiescent early-types is QA ~ 1-3 Gyr. The fraction of late-types with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of ~ 5 from the inner half virial radius of the Virgo cluster, where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions. The efficient quenching of the star formation activity observed in Virgo suggests that the dominant stripping process is ram pressure. We discuss the implication of this result in the cosmological context of galaxy evolution.
We report the analysis of the Chandra observation of XDCP J0044.0-2033, a massive, distant (z=1.579) galaxy cluster discovered in the XDCP survey. The total exposure time of 380 ks with Chandra ACIS-S provides the deepest X-ray observation currently achieved on a massive, high redshift cluster. Extended emission from the Intra Cluster Medium (ICM) is detected at a very high significance level (S/N~20) on a circular region with a 44 radius, corresponding to $R_{ext}=375$ kpc at the cluster redshift. We perform an X-ray spectral fit of the ICM emission modeling the spectrum with a single-temperature thermal mekal model. Our analysis provides a global temperature $kT=6.7^{+1.3}_{-0.9}$ keV, and a iron abundance $Z_{Fe} = 0.41_{-0.26}^{+0.29}Z_{Fe_odot}$ (error bars correspond to 1 $sigma$). We fit the background-subtracted surface brightness profile with a single $beta$-model out to 44, finding a rather flat profile with no hints of a cool core. We derive the deprojected electron density profile and compute the ICM mass within the extraction radius $R_{ext}=375$ kpc to be $M_{ICM}(r<R_{ext}) = (1.48 pm 0.20) times 10^{13} M_odot$. Under the assumption of hydrostatic equilibrium and assuming isothermality within $R_{ext}$, the total mass is $M_{2500}= 1.23_{-0.27}^{+0.46} times 10 ^{14} M_odot$ for $R_{2500} = 240_{-20}^{+30}$ kpc. Extrapolating the profile at radii larger than the extraction radius $R_{ext}$ we find $M_{500} = 3.2_{-0.6}^{+0.9} times 10 ^{14}M_odot$ for $R_{500} = 562_{-37}^{+50}$ kpc. This analysis establishes the existence of virialized, massive galaxy clusters at redshift $zsim 1.6$, paving the way to the investigation of the progenitors of the most massive clusters today. Given its mass and the XDCP survey volume, XDCP J0044.0-2033 does not create significant tension with the WMAP-7 $Lambda$CDM cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا