ﻻ يوجد ملخص باللغة العربية
The ultimate goal of physics is finding a unique equation capable of describing the evolution of any observable quantity in a self-consistent way. Within the field of statistical physics, such an equation is known as the generalized Langevin equation (GLE). Nevertheless, the formal and exact GLE is not particularly useful, since it depends on the complete history of the observable at hand, and on hidden degrees of freedom typically inaccessible from a theoretical point of view. In this work, we propose the use of deep neural networks as a new avenue for learning the intricacies of the unknowns mentioned above. By using machine learning to eliminate the unknowns from GLEs, our methodology outperforms previous approaches (in terms of efficiency and robustness) where general fitting functions were postulated. Finally, our work is tested against several prototypical examples, from a colloidal systems and particle chains immersed in a thermal bath, to climatology and financial models. In all cases, our methodology exhibits an excellent agreement with the actual dynamics of the observables under consideration.
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density fiel
For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we
We investigate the nature of the effective dynamics and statistical forces obtained after integrating out nonequilibrium degrees of freedom. To be explicit, we consider the Rouse model for the conformational dynamics of an ideal polymer chain subject
It is known that in the regime of superlinear diffusion, characterized by zero integral friction (vanishing integral of the memory function), the generalized Langevin equation may have non-ergodic solutions which do not relax to equilibrium values. I
We discuss the use of a Langevin equation with a colored (correlated) noise to perform constant-temperature molecular dynamics simulations. Since the equations of motion are linear in nature, it is easy to predict the response of a Hamiltonian system