ﻻ يوجد ملخص باللغة العربية
The very bright and compact massive young cluster, NGC 3603, has been cited as an example of a starburst in the Milky Way and compared with the much-studied R136/30 Doradus region in the Large Magellanic Cloud. Here we build on the discovery by Mohr-Smith et al. (2017) of a large number of reddened O stars around this cluster. We construct a list of 288 candidate O stars with proper motions, in a region of sky spanning 1.5x1.5 square degrees centered on NGC 3603, by cross-matching the Mohr-Smith et al. (2017) catalogue with Gaia DR2 (Gaia Collaboration et al. 2018). This provides the basis for a first comprehensive examination of the proper motions of these massive stars in the halo of NGC 3603, relative to the much better studied central region. We identify up to 11 likely O star ejections -- 8 of which would have been ejected between 0.60 and 0.95 Myr ago (supporting the age of c.1 Myr that has been attributed to the bright cluster centre). Seven candidate ejections are arranged in a partial ring to the south of the cluster core spanning radii of 9-18 arcmin (18-36 pc if the cluster is 7 kpc away). We also show that the cluster has a halo of a further 100 O stars extending to a radius of at least 5 arcmin, adding to the picture of NGC 3603 as a scaled down version of the R136/30 Dor region.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its interme
Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequen
We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We
This is the third installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R~2500 digital observations selected from the Galactic O-Star Catalog (GOSC). In this paper we present 1
An unsettled question concerning the formation and distribution of massive stars is whether they must be born in massive clusters and, if found in less dense environments, whether they must have migrated there. With the advent of wide-area digital ph