ﻻ يوجد ملخص باللغة العربية
Real-world networks exhibit prominent hierarchical and modular structures, with various subgraphs as building blocks. Most existing studies simply consider distinct subgraphs as motifs and use only their numbers to characterize the underlying network. Although such statistics can be used to describe a network model, or even to design some network algorithms, the role of subgraphs in such applications can be further explored so as to improve the results. In this paper, the concept of subgraph network (SGN) is introduced and then applied to network models, with algorithms designed for constructing the 1st-order and 2nd-order SGNs, which can be easily extended to build higher-order ones. Furthermore, these SGNs are used to expand the structural feature space of the underlying network, beneficial for network classification. Numerical experiments demonstrate that the network classification model based on the structural features of the original network together with the 1st-order and 2nd-order SGNs always performs the best as compared to the models based only on one or two of such networks. In other words, the structural features of SGNs can complement that of the original network for better network classification, regardless of the feature extraction method used, such as the handcrafted, network embedding and kernel-based methods.
Graphs are naturally used to describe the structures of various real-world systems in biology, society, computer science etc., where subgraphs or motifs as basic blocks play an important role in function expression and information processing. However
Finding dense bipartite subgraphs and detecting the relations among them is an important problem for affiliation networks that arise in a range of domains, such as social network analysis, word-document clustering, the science of science, internet ad
This paper proposes a novel model for predicting subgraphs in dynamic graphs, an extension of traditional link prediction. This proposed end-to-end model learns a mapping from the subgraph structures in the current snapshot to the subgraph structures
Real-world complex networks describe connections between objects; in reality, those objects are often endowed with some kind of features. How does the presence or absence of such features interplay with the network link structure? Although the situat
Network representation learning (NRL) is an effective graph analytics technique and promotes users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many real-world tasks related to network science, su