ﻻ يوجد ملخص باللغة العربية
Understanding the physics of how stars form is a highly-prioritized goal of modern Astrophysics, in part because star formation is linked to both galactic dynamics on large scales and to the formation of planets on small scales. It is well-known that stars form from the gravitational collapse of molecular clouds, which are in turn formed out of the turbulent interstellar medium. Star formation is highly inefficient, with one of the likely culprits being the regulation against gravitational collapse provided by magnetic fields. Measurement of the polarized emission from interstellar dust grains, which are partially aligned with the magnetic field, provides a key tool for understanding the role these fields play in the star formation process. Over the past decade, much progress has been made by the most recent generation of polarimeters operating over a range of wavelengths (from the far-infrared through the millimeter part of the spectrum) and over a range of angular resolutions (from less than an arcsecond through fractions of a degree). Future developments in instrument sensitivity for ground-based, airborne, and space-borne polarimeters operating over range of spatial scales are critical for enabling revolutionary steps forward in our understanding of the magnetized turbulence from which stars are formed.
This study is motivated by recent observations on ubiquitous interstellar density filaments and guided by modern theories of compressible magnetohydrodynamic (MHD) turbulence. The interstellar turbulence shapes the observed density structures. As the
Evidence of triggered star formation at large spatial scales involving stellar clusters is scarce. We investigate a Galactic region (l=130.0, b=0.35) populated by several open stellar clusters that according to the last GAIA data release, are located
Supernovae are the most energetic stellar events and influence the interstellar medium by their gasdynamics and energetics. By this, both also affect the star formation positively and negatively. In this paper, we review the development of the comple
Synthetic observations are playing an increasingly important role across astrophysics, both for interpreting real observations and also for making meaningful predictions from models. In this review, we provide an overview of methods and tools used fo
Observations show that magnetic fields in the interstellar medium (ISM) often do not respond to increases in gas density as would be naively expected for a frozen-in field. This may suggest that the magnetic field in the diffuse gas becomes detached