Microscopically based energy density functionals for nuclei using the density matrix expansion


الملخص بالإنكليزية

While ab initio many-body techniques have been able to successfully describe the properties of light and intermediate mass nuclei based on chiral effective field theory interactions, neutron-rich nuclei still remain out of reach for these methods. Conversely, energy density functional approaches can be used to calculate properties of heavy nuclei but rely mostly on phenomenological interactions. A usable form of the nuclear energy density functional that is rooted in the modern theory of nuclear forces was presented recently. The first component of this new set of functionals corresponds to the direct part (Hartree term) of the expectation value of local chiral potentials on a Slater determinant. The exchange term, which is a functional of the non-local density, is transformed into a local functional by applying the density matrix expansion. In order to reduce the computational cost due to the direct implementation of non-separable, local interactions in the Hartree term, we use an approximation to represent the regularized Yukawa functions in terms of a sum of (separable) Gaussian functions. These proceedings analyze the accuracy of such an approximation in terms of the number of Gaussian functions and look for an optimal value that gives an acceptable level of accuracy while maintaining the computational memory requirements in a many-body calculation as low as possible.

تحميل البحث